[スポンサーリンク]

化学者のつぶやき

光有機触媒で開環メタセシス重合

みなさんは開環メタセシス重合(ROMP : Ring-opening metathesis polymerization)をご存知でしょうか?

その名の通り、2005年のノーベル賞受賞反応である“開環メタセシス反応”を使って“ポリマーを作る(重合)”反応のことを言います。ROMPは30年以上も前から研究されており、その多くは比較的狭い分子量分布のポリマーを合成することが可能で、官能基許容性にも優れています(図1)。そのため様々な機能をもつポリマー、例えばポリノルボルネンやポリオクテニレンが合成・製品化されるなど、ROMPはポリマー合成における定番ツールの1つとなっています。

 

図1.金属触媒を用いた開環メタセシス重合(従来法) (出典:論文より改変)

図1.金属触媒を用いた開環メタセシス重合(従来法)(出典:論文より改変)

 

ROMPが汎用性の高い優れたポリマー合成法に成長したきっかけは、ルテニウムやモリブデンなどの金属を含む高活性なメタセシス触媒の登場にあったと言っても過言ではありません。

しかし、実はこれは諸刃の剣であり、合成したポリマーに残った金属触媒はポリマーの物理的性質に影響を与えるだけでなく、時には生体に対して毒となります。そのため、ポリマーを合成した後に何工程もかけて金属を取り除く必要がありました。この問題に解を与えるべく、ワシントン大学のBoydstonらは金属触媒を用いない開環メタセシス重合反応を初めて報告しました。開発のキーワードは“ラジカルカチオンの発生”“光レドックス触媒”です。

 

“Metal-Free Ring-Opening Metathesis Polymerization”

Ogawa, K. A.; Goetz, A. E.; Boydston, A. J.

J. Am. Chem. Soc. 2015, 137, 1400. DOI: 10.1021/ja512073m

 

開発のキーワードその1:ラジカルカチオンの発生

開発のヒントとなったのが、2006年に東京農工大学の千葉一裕教授らのグループによって報告された電気化学的手法によるアルケンのクロスメタセシス反応でした[1](図2)。

この反応ではまず、陽極で1電子酸化されたビニルエーテルがラジカルカチオンを生じ、これと末端アルケンとが4員環のラジカルカチオン中間体を生成します。ここで生じたラジカルカチオン中間体がフラグメント化すると、目的とするクロスメタセシス反応の生成物を得ることができます。しかしながら、フラグメント化する前に1電子還元されるとシクロブタン環が生成し目的物は得られません。

 

図2.電気化学的手法を用いたアルケンのクロスメタセシス反応 (論文より改変)

図2.電気化学的手法を用いたアルケンのクロスメタセシス反応(出典:論文より改変)

 

Boydstonらは

「もし、副生し得るシクロブタン環に非常に高い歪エネルギーがかかっていたら、目的とするクロスメタセシス反応のみが進行するのではないか」

と予想しました。そもそもシクロブタン環はおよそ109°の結合角をもつsp3炭素を90°に“無理矢理”曲げているわけですから、シクロブタン環には高い歪エネルギーがかかっています。これを更に歪ませれば結合を形成する(保つ)ことができないので副反応を抑えることができるはずです。

また、4員環のラジカルカチオン中間体からフラグメント化して生じる2つのアルケンを鎖で繋いでおけば(つまり環状オレフィンを用いれば)、その1端はアルケン、もう1端は新たなラジカルカチオンとなります。生じたラジカルカチオンは別のアルケンと再度反応することができるため、これを連続的に繰り返すことで“金属触媒を使わないROMP”が実現できます(図3)。

 

図3.金属触媒を用いない開環メタセシス重合反応の開発戦略 (出典;論文より改変)

図3.金属触媒を用いない開環メタセシス重合反応の開発戦略(出典;論文より改変)

 

開発のキーワードその2:光レドックス触媒の利用

では、Boydstonらはどうやってビニルエーテルにラジカルカチオンを発生させたのでしょう?その答えは光レドックス触媒の利用でした。著者らはビニルエーテルを一電子酸化しラジカルカチオンを発生させるのに適切な酸化電位をもつピリリウム塩に注目しました。

有機合成化学において、光照射によって励起されたピリリウム塩は一電子酸化剤として働き様々な反応を進行させることが既に知られています(図4)。また、光レドックス触媒は光照射のオン・オフでラジカルの生成を制御できるといった特徴をもち、重合反応に適用することで重合度の制御が容易に行える、といったメリットが有ります。

 

図4.光励起されたピリリウム塩 (出典:論文より改変)

図4.光励起されたピリリウム塩(出典:論文より改変)[2]

Boydstonらの考えは見事に当たり、ノルボルネンのジクロロメタン溶液に0.03%のピリリウム–テトラフルオロボレート塩を添加し青色LEDを照射したところ、重合反応が進行しPNBが生成することを確認しました(図5)。モノマー(ノルボルネン)とピリリウム塩との比率を変えることで分子量の制御(最大57.4 kDa)も可能で、分散度は1.3-1.7程度と金属触媒(第1世代Grubbs触媒)を用いたROMPに匹敵する良い値を示しました。

 

図5.ピリリウム塩を用いた開環メタセシス重合反応 (出典:論文より改変)

図5.ピリリウム塩を用いた開環メタセシス重合反応(出典:論文より改変)

 

先に述べたとおり、光レドックス触媒を用いる利点は重合反応の進行を光照射のオン・オフで制御できることにあります。この反応も例外ではなく、光照射下では重合反応は進行し、光照射を止めると反応は進行しません。その後再び光を照射すると重合が進行しますので、光の照射時間で重合度を制御することも可能です。詳しくは原著論文を見てみて下さい。

惜しむらくは、現段階で適用可能な基質がノルボルネンに限られるところでしょうか。また、今回の手法で合成されたポリマーはシス体とトランス体とが1:2で混ざっています。このような立体異性体の混合比はポリマーの性質に大きく影響しますので、それらを選択的に作り分けることができればさらに明るい未来が広がるでしょう(現在、金属メタセシス触媒を用いると可能です)。

いずれにしても、本研究はROMPに新しい戦略をもたらした画期的なものであると言えます。これを機に、より汎用性の高い手法がでてくることに期待です。

 

参考文献

  1. Miura, T.; Kim, S.; Kitano, Y.; Tada, M.; Chiba, K. Angew. Chem., Int. Ed. 2006, 45, 1461. DOI:10.1002/anie.200503656
  2.  Miranda, M. A.; García, H. Chem. Rev. 1994, 94, 1063. DOI:10.1021/cr00028a009

 

関連書籍

 

外部リンク

 

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 神秘的な海の魅力的アルカロイド
  2. イオンペアによるラジカルアニオン種の認識と立体制御法
  3. ラウリマライドの全合成
  4. 超強塩基触媒によるスチレンのアルコール付加反応
  5. 素粒子と遊ぼう!
  6. 顕微鏡で有機化合物のカタチを決める!
  7. カガクをつなげるインターネット:サイエンスアゴラ2017
  8. 白リンを超分子ケージに閉じ込めて安定化!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. スイス医薬大手のロシュ、「タミフル」の生産能力を増強へ
  2. ロジウム(I)触媒を用いるアリールニトリルの炭素‐シアノ基選択的な切断とホウ素化反応
  3. ゴム状硫黄は何色?
  4. 博士課程学生の奨学金情報
  5. 有機合成化学協会誌2017年11月号:オープンアクセス・英文号!
  6. デス・マーチン酸化 Dess-Martin Oxidation
  7. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編
  8. エイモス・B・スミス III Amos B. Smith III
  9. NMR管
  10. シスプラチン しすぷらちん cisplatin

関連商品

注目情報

注目情報

最新記事

分子で作る惑星、その名もナノサターン!

2018年、東工大の豊田真司先生らによって、まるで土星を型どったような分子の合成が報告された。フラー…

磯部 寛之 Hiroyuki Isobe

磯部寛之(いそべひろゆき、1970年11月9日–東京都生まれ)は日本の有機化学者である。東京大学理学…

死海付近で臭素が漏洩

イスラエル警察は死海付近の向上から臭素が漏れだしたことを明らかにし、付近住民に自宅にとどまるよう呼び…

光触媒反応用途の青色LED光源を比較してみた

巷で大流行の可視光レドックス触媒反応ですが、筆者のラボでも活用するようになりました。しかし経…

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

電子豊富芳香環に対する触媒的芳香族求核置換反応

2017年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触…

Chem-Station Twitter

PAGE TOP