[スポンサーリンク]

化学者のつぶやき

(−)-Salinosporamide Aの全合成

[スポンサーリンク]

()-salinosporamide Aの立体選択的全合成が達成された。アザペイン転位/ヒドロアミノ化反応を用いたピロリジン骨格の構築法と合成終盤でのC–H挿入反応が本合成の鍵反応である。

Salinosporamide Aとは

(−)-Salinosporamide A (1:Marizomib)は2003年にFenicalらによって海洋微生物であるSalinosporaから単離された、強力な20Sプロテアソーム阻害活性をもつ天然物である[1]。構造の類似したomuralide (2)も知られるが、1のプロテアソーム阻害活性は2より強く、1は多発性骨髄腫の治療薬候補として臨床試験中である(図1A)[2]

1は高度に官能基化されたピロリジノン骨格(γ-ラクタム環)やβ-ラクトン環、及びシクロへキセニル環といった特徴的な構造をもち、さらには連続する5つの不斉中心を有するなど、合成化学的にも興味深い化合物である。そのため、多くの合成化学者によって数多くの合成経路が開発されてきた[2a]
初の1全合成は、Coreyらによって2004年の単離からわずか1年で達成された(図1B)[3]。この全合成は、その立体選択性や総収率の高さから今もなお注目されている。特に8から立体選択的に9を導く付加反応は以降報告された1合成においても多く用いられている。一方で、ピロリジン骨格の構築段階(4から6)が7日間を要するという課題があった。
今回、ミシガン州立大学のBorhan教授らは、アザ-ペイン転位/ヒドロアミノ化反応(1211)によりピロリジン骨格を構築することで、立体選択的な(−)-salinosporamide A (1)の全合成に成功したので紹介する(図1C)。合成終盤(10)におけるC–H挿入反応も本合成成功の鍵である。

図1. (A)20Sプロテアソーム阻害剤 (B)Coreyらの合成法 (C)(−)-Salinosporamide Aの逆合成

“Total Synthesis of ()-Salinosporamide A via a Late Stage C–H Insertion”
Gholami, H.; Kulshrestha, A.; Favor, O. K.; Staples, R. J.; Borhan, B. Angew. Chem., Int. Ed. 2019,58, Early View.
DOI:10.1002/anie.201900340

論文著者の紹介

研究者:Babak Borhan
研究者の経歴:
1988   B.Sc., University of California, Davis
1995   Ph.D., University of California, Davis
1995–1998   Postdoc, Columbia University
1998– Professor, Michigan State University
研究内容:有機分光法、有機合成化学、生物有機化学

論文の概要

(−)-Salinosporamide A (1)は連続する5つの不斉中心を有するため、反応の立体制御が課題である。

入手容易な13を出発物質とし、14に誘導した後、有機触媒存在下アジリジン形成を行い、高いエナンチオ選択性で非対称アジリジン15を合成した。次に、15のアルデヒドに対しエチニルマグネシウムブロミドをジアステレオ選択的に付加させた後、12のアザ-ペイン転位/ヒドロアミノ化反応によって立体構造を保ちながらピロリジン骨格11を構築した[4]

その後、18のC3位のアリル化に関しては、C5位置換基の嵩高さを利用した立体制御を行い、20を主生成物として得た。18のアルコール保護基をTBS基からBn基に変えると、ジアステレオ選択性が低下する。また詳しくは論文を参照されたいが、C5位へのC–H挿入は、アニオンやカチオン、ラジカルを経る反応では実現できず、今回用いたビニルカルベン経由でのみ目的の23を与えた。

最後に、Coreyらの手法と同様に、シクロヘキセニルジンククロリドのジアステレオ選択的付加反応によりシクロへキセニル環を導入することで、1の合成を達成した。

図2. (−)-Salinosporamide Aの立体選択的合成

以上、今回筆者らはアザ-ペイン転位/ヒドロアミノ化反応を用いてピロリジン骨格を構築し、合成終盤で適切なC–H挿入反応を選択することで、(−)-salinosporamide A (1)の立体選択的全合成に成功した。今後、類似骨格をもつ天然物や誘導体合成への応用が期待できる。

参考文献

  1. Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Angew. Chem., Int. Ed.2003, 42, 355. DOI:10.1002/anie.200390115
  2. a) Gulder, T. A. M.; Moore, B. S. Angew. Chem., Int. Ed.2010, 49, 9346. DOI: 10.1002/anie.201000728b) Groll, M.; Huber, R.; Potts, B. C. M. J. Am. Chem. Soc. 2006, 128, 5136. DOI:10.1021/ja058320bc) Caubert, V.; Masse, J.; Retailleau, J.; Langlois, N.  Tetrahedron Lett. 2007, 48, 381. DOI: 10.1021/ol8016066
  3. Reddy, L. R.; Saravanan, P.; Corey, E. J. J. Am. Chem. Soc.2004, 126, 6230. DOI:10.1021/ja048613p
  4. Schomaker, J. M.; Geiser, A. R.; Huang, R.; Borhan, B. J. Am. Chem. Soc.2007, 129, 3794. DOI:10.1021/ja068077w
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学研究ライフハック:Twitter活用のためのテクニック
  2. 光分解性シアニン色素をADCのリンカーに組み込む
  3. 脱芳香化反応を利用したヒンクデンチンAの不斉全合成
  4. 化学のちからで抗体医薬を武装する
  5. 次世代の放射光施設で何が出来るでしょうか?
  6. 未来の科学者を育てる政策~スーパーサイエンスハイスクール(SSH…
  7. 相撲と化学の意外な関係(?)
  8. 逆電子要請型DAでレポーター分子を導入する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2001年ノーベル化学賞『キラル触媒を用いる不斉水素化および酸化反応の開発』
  2. 有機分子触媒ーChemical Times特集より
  3. 難溶性多糖の成形性を改善!新たな多糖材料の開発に期待!
  4. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!②
  5. キャリー・マリス Kary Banks Mullis
  6. 不斉アリル位アルキル化反応を利用した有機合成
  7. コールマン試薬 Collman’s Reagent
  8. トリフルオロメタンスルホン酸ランタン(III):Lanthanum(III) Trifluoromethanesulfonate
  9. アメリカで Ph.D. を取る –エッセイを書くの巻– (前編)
  10. 留学せずに英語をマスターできるかやってみた(1年目)

関連商品

注目情報

注目情報

最新記事

アゾベンゼンは光る!~新たな発光材料として期待~

第225回のスポットライトリサーチは、関西学院大学 増尾研究室 助教の山内光陽(やまうち みつあき)…

ハラスメントから自分を守るために。他人を守るために【アメリカで Ph.D. を取る –オリエンテーションの巻 その 2-】

アカデミックハラスメントやセクシャルハラスメントは、学業やキャリアの成功に悪影響を与えます。 どんな…

2つのグリニャールからスルホンジイミンを作る

グリニャール試薬とスルフィニルアミンを用いたスルホンジイミン合成が達成された。爆発性物質、臭気性物質…

赤外光で分子の結合を切る!

第224回のスポットライトリサーチは、東京大学生産技術研究所芦原研究室の森近一貴(もりちか いっき)…

トム・マイモニ Thomas J. Maimone

トーマス・J・マイモニ(Thomas J. Maimone、1982年2月13日–)は米国の有機化学…

キャリアデザイン研究講演会~化学研究と企業と君との出会いをさがそう!~

詳細はこちら:https://csjkinki.com/career/日時…

Chem-Station Twitter

PAGE TOP