[スポンサーリンク]

化学者のつぶやき

日本ビュッヒ「Cartridger」:カラムを均一・高効率で作成

[スポンサーリンク]

 

近年、パックドカラムの興隆により、実験室での化合物精製環境が一変しています。カラムを立てて、シリカゲルを詰め、粗生成物をマウントしポンプで押しながら分離する、といったこれまでの常識であった光景は、将来的にほとんどみられなくなることでしょう。自動精製装置にパックドカラムをセットして、ボタンをポチッと押すだけ。その間に他の実験の処理や解析を行なうことができますね。

今でも異論はあるとは思いますが、複雑化、多方面からの実験・解析が必要となっている昨今、実験のタイムマネージメントも研究を進める上で極めて重要であると感じでいます。

パックドカラム、自動精製装置に関しては過去の以下の記事をご参照ください。

 

 

さて、そんな便利なパックドカラムに唯一の難点が「高価」であるということ。上記の過去記事にあるように、どうにか安くならないかと画策していますが、まだまだ安価に化合物を精製できる状況とはいえません。そもそもシリカゲルなどのゲルがかなり高価なんですが。特に大きなカラムとなると、下手をすると合成品とゲルどっちが高いんだろう?というぐらい、パックドカラムは高いです。需要と供給の関係ですね。

少し前置きが長くなりましたが、そんなパックドカラムを自分で均一に作成することができたら…

それを叶えたのが日本ビュッヒから発売されている「Cartridger」(カートリッジャー)。簡単にいえば、パックドカラム製造機です。

【2021/11/1追記】本製品は販売中止となりました。

パックドカラム作成って利点を消してない?

パックドカラム作成するって簡便性の利点を消してないか?と思われるでしょう。その通りです。面倒でしたら「使って捨てるだけ」というカラム側の簡便性がへっています。しかし、サイズの大きなカラムは本当に高価なんですね。それでも、すばやく均一かつ安価にカラムをつくることができたら、カラムの溶媒の安定化時間の短縮、データの正確性・保存性、自動化という点で自動精製装置が使えるといった利点は大きくくなります。

 

吸い込んでつめるだけ

下記の動画を見れば作成方法は一目瞭然だと思われます。

 

一応説明しますと、

  1. シリカゲルを専用の容器に投入
  2. ポンプのスイッチを入れ、フィルターをつめたカートリッジを用意
  3. カートリッジ挿入、ポンプの力でゲルを吸い上げ、フィルターを装着

これで完成です。極めて簡単です。実際に簡単で1分もあれば大きなカラムも作成できます。

 

2015-05-25_13-31-14

図1 Cartridgerの使用方法

 

コストとその他の問題

ではコストをみてみましょう。実際各々の製品に値引き等がありますので正確な値は表示・比較できませんが、大きなカートリッジを用いる場合、1本当たりパックドカラムを使う場合に比べて必ず半額以下になります。実は専用のカートリッジが必要であり、意外に高いのですが、大きいパックドカラムは比較にならないぐらい高価です(使い捨のカートリッジ以外に何度も使えるガラス製のカートリッジもあります)。

もう1つ誰もが思う疑問は、「本当にこの機械が必要なのか?」という点です。確かに、カートリッジにシリカゲルをサラサラといれてもいいかもしれません。実際に機械なしでもやってみましたが作れないことはありませんでした。ただしもう少し時間がかかります。また、カートリッジに隙間なく詰め込むことは困難です。さらに比較した訳では無いですが、均一にカラムを詰めることができていないため、分離能が下がります。

最後に、分離能はどうなの?という点ですが、使用した感覚ですと、各社が発売しているパックドカラムとほとんどかわりません。ただ、バイオタージから発売しているハイパフォーマンスのパックドカラムよりは分離能が落ちました。そもそものシリカゲルのサイズをより細かいものに変更すれば分離能は上がると思います。

 

デモをしてみてはいかがでしょうか?

まずはデモで試してみることをオススメいたします。デモには多くのカートリッジもつけてくれますので、カラムを作成して自身の化合物を分離してみてはいかがでしょうか。

お問い合せはこちら!

 

日本ビュッヒ株式会社

住所:〒1100-0008東京都台東区池之端2-7-17IMONビル3F

電話:03-3821-4777

E-mail: nihon@buchi.com

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 就職か進学かの分かれ道
  2. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  3. 第97回 触媒化学融合研究センター講演会に参加してみた
  4. 振動強結合によるイオン伝導度の限界打破に成功
  5. 三中心四電子結合とは?
  6. マタタビの有効成分のはなし【更新】
  7. ホウ素が隣接した不安定なカルベン!ジボリルカルベンの生成
  8. Micro Flow Reactorで瞬間的変換を達成する

注目情報

ピックアップ記事

  1. ケミカルジェネティクス chemical genetics
  2. ファンケル、「ツイントース」がイソフラボンの生理活性を高める働きなどと発表
  3. 近況報告PartI
  4. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  5. 有機合成の落とし穴
  6. O-脱メチル化・脱アルキル化剤 基礎編
  7. メカノケミカル有機合成反応に特化した触媒の開発
  8. デスソース
  9. 【24卒 化学業界就活スタート講座 5月15日(日)Zoomウェビナー開催決定!】化学系学生のための就活×太陽ホールディングス
  10. セメントから超電導物質 絶縁体のはずなのに

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年5月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP