[スポンサーリンク]

化学者のつぶやき

日本ビュッヒ「Cartridger」:カラムを均一・高効率で作成

[スポンサーリンク]

 

近年、パックドカラムの興隆により、実験室での化合物精製環境が一変しています。カラムを立てて、シリカゲルを詰め、粗生成物をマウントしポンプで押しながら分離する、といったこれまでの常識であった光景は、将来的にほとんどみられなくなることでしょう。自動精製装置にパックドカラムをセットして、ボタンをポチッと押すだけ。その間に他の実験の処理や解析を行なうことができますね。

今でも異論はあるとは思いますが、複雑化、多方面からの実験・解析が必要となっている昨今、実験のタイムマネージメントも研究を進める上で極めて重要であると感じでいます。

パックドカラム、自動精製装置に関しては過去の以下の記事をご参照ください。

 

 

さて、そんな便利なパックドカラムに唯一の難点が「高価」であるということ。上記の過去記事にあるように、どうにか安くならないかと画策していますが、まだまだ安価に化合物を精製できる状況とはいえません。そもそもシリカゲルなどのゲルがかなり高価なんですが。特に大きなカラムとなると、下手をすると合成品とゲルどっちが高いんだろう?というぐらい、パックドカラムは高いです。需要と供給の関係ですね。

少し前置きが長くなりましたが、そんなパックドカラムを自分で均一に作成することができたら…

それを叶えたのが日本ビュッヒから発売されている「Cartridger」(カートリッジャー)。簡単にいえば、パックドカラム製造機です。

【2021/11/1追記】本製品は販売中止となりました。

パックドカラム作成って利点を消してない?

パックドカラム作成するって簡便性の利点を消してないか?と思われるでしょう。その通りです。面倒でしたら「使って捨てるだけ」というカラム側の簡便性がへっています。しかし、サイズの大きなカラムは本当に高価なんですね。それでも、すばやく均一かつ安価にカラムをつくることができたら、カラムの溶媒の安定化時間の短縮、データの正確性・保存性、自動化という点で自動精製装置が使えるといった利点は大きくくなります。

 

吸い込んでつめるだけ

下記の動画を見れば作成方法は一目瞭然だと思われます。

 

一応説明しますと、

  1. シリカゲルを専用の容器に投入
  2. ポンプのスイッチを入れ、フィルターをつめたカートリッジを用意
  3. カートリッジ挿入、ポンプの力でゲルを吸い上げ、フィルターを装着

これで完成です。極めて簡単です。実際に簡単で1分もあれば大きなカラムも作成できます。

 

2015-05-25_13-31-14

図1 Cartridgerの使用方法

 

コストとその他の問題

ではコストをみてみましょう。実際各々の製品に値引き等がありますので正確な値は表示・比較できませんが、大きなカートリッジを用いる場合、1本当たりパックドカラムを使う場合に比べて必ず半額以下になります。実は専用のカートリッジが必要であり、意外に高いのですが、大きいパックドカラムは比較にならないぐらい高価です(使い捨のカートリッジ以外に何度も使えるガラス製のカートリッジもあります)。

もう1つ誰もが思う疑問は、「本当にこの機械が必要なのか?」という点です。確かに、カートリッジにシリカゲルをサラサラといれてもいいかもしれません。実際に機械なしでもやってみましたが作れないことはありませんでした。ただしもう少し時間がかかります。また、カートリッジに隙間なく詰め込むことは困難です。さらに比較した訳では無いですが、均一にカラムを詰めることができていないため、分離能が下がります。

最後に、分離能はどうなの?という点ですが、使用した感覚ですと、各社が発売しているパックドカラムとほとんどかわりません。ただ、バイオタージから発売しているハイパフォーマンスのパックドカラムよりは分離能が落ちました。そもそものシリカゲルのサイズをより細かいものに変更すれば分離能は上がると思います。

 

デモをしてみてはいかがでしょうか?

まずはデモで試してみることをオススメいたします。デモには多くのカートリッジもつけてくれますので、カラムを作成して自身の化合物を分離してみてはいかがでしょうか。

お問い合せはこちら!

 

日本ビュッヒ株式会社

住所:〒1100-0008東京都台東区池之端2-7-17IMONビル3F

電話:03-3821-4777

E-mail: nihon@buchi.com

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 第4回「YUGOKAFe」に参加しました!
  2. 硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築
  3. 一人二役のフタルイミドが位置までも制御する
  4. 乙卯研究所 研究員募集 2022年度
  5. Excelでできる材料開発のためのデータ解析[超入門]-統計の基…
  6. カルベンで炭素ー炭素単結合を切る
  7. 論文投稿・出版に役立つ! 10の記事
  8. 実験白衣を10種類試してみた

注目情報

ピックアップ記事

  1. 第六回 電子回路を合成するー寺尾潤准教授
  2. 博士課程学生の奨学金情報
  3. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-
  4. マンダム、不快刺激が少なく持続的な清涼成分を発見 ~夏をより快適に過ごすための研究~
  5. 神谷 信夫 Nobuo Kamiya
  6. すぐできる 量子化学計算ビギナーズマニュアル
  7. 試験概要:乙種危険物取扱者
  8. MEDCHEM NEWS 32-3号「シン・メディシナルケミストリー」
  9. 乙卯研究所 研究員募集 2023年度
  10. 工業生産モデルとなるフロー光オン・デマンド合成システムの開発に成功!:クロロホルムを”C1原料”として化学品を連続合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年5月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP