[スポンサーリンク]

chemglossary

O-脱メチル化・脱アルキル化剤 基礎編

[スポンサーリンク]

 

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足りないメチル基 (アルキル基) ですが、安価な市販試薬から合成計画を立てると、脱メチル化反応を行わざるを得ないこともあります。
「脱メチル化」でググったらサジェストにケムステと出てきたので、情報を求めている研究者がいるのだと思い、筆者の備忘録も兼ねてシリーズでまとめてみます。

※あくまでも代表的な反応のまとめです。メトキシ基の脱メチル化反応はできるだけ合成の初期に行い、さっさと別の保護基に付け替えてしまうのがベターでしょう。

01. 三臭化ホウ素 BBr3

O-脱アルキル化といえば、ルイス酸の使用が常套手段です。その中でも第一選択となるのは三臭化ホウ素 BBr3 だと思われます。 BBr3 は非常に強力なルイス酸で、O 原子の非共有電子対がホウ素原子の空軌道にアタックして錯体形成し O カチオンを生じます。次いで脱離したブロモアニオンがメチル基を引き抜き、ブロモメタンとアルコキシジブロモボランが生成します。アルコキシジブロモボランは加水分解によりホウ酸・臭化水素及び対応するヒドロキシ化合物になります。一連の scheme は図 1 に示します。

図1  BBr3によるアニソールのO-脱メチル化

BBr3 は高い反応性を有するため、低温条件下 (–78˚C ~ 0˚C) で反応を開始し、進行具合をチェックしながら徐々に昇温していくのが一般的です。また、水と激しく反応するためクエンチ時には細心の注意が必要です。近年は BBr3 のジクロロメタン溶液 (ca. 1 mol/L) が各社から市販されており、それを用いるのが簡便です。

ちなみにジクロロメタン溶液であってもメチャクチャ発煙するため、最初に使うときはかなりビビります。またセプタムが赤黒く焦げたようになるのでいろいろと心臓に悪いです。あと溶液状の試薬は比較的効果なのがネックですね。100 mL (BBr0.1 mol 相当) で 1万円強します。だいたい当量以上加えるので、意外に減りが早いです。

02. 塩化アルミニウム AlCl

こちらも三臭化ホウ素と同様の強ルイス酸ですが、その反応性はだいぶ抑えられています。無水物と六水和物が市販されていますが、通常ルイス酸としては無水物のほうを使用します。Friedel-Crafts アシル化反応によく用いられますね。BBr3と比べてかなり安価なのも良い点です。ジクロロメタン中、基質と混ぜて加熱するだけで O-脱メチル化が進行する場合もありますが、さまざまな改良法も報告されています。アセトニトリル中での反応が良い結果を与えるようです [1]

図2 AlCl3 による O-脱メチル化あれこれ (文献[1]より引用)

AlCl使用時の注意点としては、ビンを開けると塩化水素の煙が立つのでマスクをしてドラフトで扱うこと、潮解性があり、また表面は酸化皮膜により不活性化している場合が多いので、乳鉢などに秤量し素早くすり潰してから使用することなどが挙げられます。

03. 47%臭化水素酸 HBr

こちらはブレンステッド酸を用いる脱メチル化の常套手段です。反応機構は簡単で、酸素原子がプロトン化されたところで臭化物アニオンがアルキル基を引き抜き、O-脱アルキル化体とブロモメタンを与えます (図3)。やり方は基質に47% HBr水溶液をそのまま加えて 130˚C ほどに加熱します。基質が溶けにくくうまく進行しない場合は溶媒として酢酸を加えてやっても OK です。臭化リチウム LiBr [2]アリコート336 [3] を加える変法も報告されています。

図3 臭化水素酸による O-脱メチル化

筆者の経験では、熱または酸に弱い部分がなければ割と綺麗に進行します。ルイス酸でうまくいかなかった時、試しに少量放り込んでみるのもいいかもしれません。HBrは水溶液だけでなく、酢酸溶液も市販されています (https://www.tcichemicals.com/JP/ja/p/H0182)。

04. アルキルチオール

強酸を用いない条件として有用なのはアルキルチオールを用いた O-脱メチル化です。古典的なのは NaOH などの塩基性条件下エタンチオール EtSH を用いる条件ですが、低級チオール特有の悪臭が問題となります。そこで有用なのが長鎖チオールを用いた反応です。Chae は悪臭のない 1-ドデカンチオール CH3(CH2)11SH を用いた例を報告しています (図4) [4]

図4  ドデカンチオールを用いた O-脱メチル化

この反応は THF や1,4-ジオキサン中では reflux でも進行せず、NMPDMSO などの高沸点溶媒中 130˚C で加熱することにより 90%以上の良い収率を与えます。 ただし DMSO 中だと多少の副生成物が生じることから、NMP が最も優れた溶媒のようです。原報では窒素雰囲気下を必要としているところ、また熱に弱い化合物には不適なところがネックでしょうか。
エタンチオールに塩化アルミニウム AlCl3 などのルイス酸を共存させる方法も知られており、そちらは氷冷下でも進行するようです。

おわりに

以上の 4 条件は、脱メチル化・脱アルキル化の中でも基本中の基本となるものです。Greene”s Protective Group にはさまざまな試薬を用いた条件載っていますが、多くはルイス酸・ブレンステッド酸・チオールのような求核剤を用いたも

のの変法です。複雑な基質や位置選択性を望む場合などは種々適した条件があると考えられますが、できれば今回紹介した基本反応を合成の初期段階で試し、最初に述べたように別の保護基へさっさと付け替えてしまうことが望ましいでしょう。
次回はいくつか変わった条件を紹介したいと思います。

参考文献

  1. Sang, D.; Tu, X.; Tian, J.; He, Z.; and Yao, M.,  “Anchimerically Assisted Cleavage of Aryl Methyl Ethers by Aluminum Chloride-Sodium Iodide in Acetonitrile”, ChemistrySelect, 2018, 3, 10103-10107, DOI; 10.1002/slct.201802565.
  2. Li, Z.; Sutandar, E.; Goihl, T.; Zhang, X.; Pan, X., “Cleavage of ethers and demethylation of lignin in acidic concentrated lithium bromide (ACLB) solution”, Green Chem., 2020, 22, 7989-8001, DOI: 10.1039/d0gc02581j.
  3. Waghmode, S.B.; Mahal, G.;  Patil, V.P.; Renalson, K.; Singh, D., “Efficient Method for Demethylation of Aryl Methyl Ether Using Aliquat-336”, Syn. Commun, 2013, 43, 3272-3280, DOI: 10.1080/00397911.2013.772201.
  4. Chae, J., “Practical Demethylation of Aryl Methyl Ethers using an Odorless Thiol Reagent”, Arch. Pharm. Res. 2008, 31, 305-309. DOI: 10.1007/s12272-001-1156-y.

関連書籍

酸と塩基の有機反応化学

酸と塩基の有機反応化学

奥山 格
¥2,750(as of 02/01 16:12)
Amazon product information
Greene's Protective Groups in Organic Synthesis

Greene's Protective Groups in Organic Synthesis

Wuts, Peter G. M.
¥16,009(as of 02/01 17:30)
Amazon product information
合成有機化学: 反応機構によるアプローチ

合成有機化学: 反応機構によるアプローチ

RakeshKumar Parashar
¥7,150(as of 02/01 12:26)
Amazon product information

関連記事

保護基のお話
ベンジル保護基
p-メトキシベンジル保護基

Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. シュテルン-フォルマー式 Stern-Volmer equat…
  2. 一重項分裂 singlet fission
  3. トランス効果 Trans Effect
  4. 並行人工膜透過性試験 parallel artificial m…
  5. Z-スキームモデル Z-Scheme Model
  6. ヤーン·テラー効果 Jahn–Teller effects
  7. 特殊ペプチド Specialty Peptide
  8. 抗体触媒 / Catalytic Antibody

注目情報

ピックアップ記事

  1. アニオン重合 Anionic Polymerization
  2. varietyの使い方
  3. 光照射によって結晶と液体を行き来する蓄熱分子
  4. タンパク質の定量法―ビシンコニン酸法 Protein Quantification – Bicinconic Acid Assay
  5. 溶媒の同位体効果 solvent isotope effect
  6. 合成化学発・企業とアカデミアの新たな共同研究モデル
  7. タングステン酸光触媒 Tungstate Photocatalyst
  8. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応
  9. ビニグロールの全合成
  10. C60MC12

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP