[スポンサーリンク]

chemglossary

O-脱メチル化・脱アルキル化剤 基礎編

[スポンサーリンク]

 

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足りないメチル基 (アルキル基) ですが、安価な市販試薬から合成計画を立てると、脱メチル化反応を行わざるを得ないこともあります。
「脱メチル化」でググったらサジェストにケムステと出てきたので、情報を求めている研究者がいるのだと思い、筆者の備忘録も兼ねてシリーズでまとめてみます。

※あくまでも代表的な反応のまとめです。メトキシ基の脱メチル化反応はできるだけ合成の初期に行い、さっさと別の保護基に付け替えてしまうのがベターでしょう。

01. 三臭化ホウ素 BBr3

O-脱アルキル化といえば、ルイス酸の使用が常套手段です。その中でも第一選択となるのは三臭化ホウ素 BBr3 だと思われます。 BBr3 は非常に強力なルイス酸で、O 原子の非共有電子対がホウ素原子の空軌道にアタックして錯体形成し O カチオンを生じます。次いで脱離したブロモアニオンがメチル基を引き抜き、ブロモメタンとアルコキシジブロモボランが生成します。アルコキシジブロモボランは加水分解によりホウ酸・臭化水素及び対応するヒドロキシ化合物になります。一連の scheme は図 1 に示します。

図1  BBr3によるアニソールのO-脱メチル化

BBr3 は高い反応性を有するため、低温条件下 (–78˚C ~ 0˚C) で反応を開始し、進行具合をチェックしながら徐々に昇温していくのが一般的です。また、水と激しく反応するためクエンチ時には細心の注意が必要です。近年は BBr3 のジクロロメタン溶液 (ca. 1 mol/L) が各社から市販されており、それを用いるのが簡便です。

ちなみにジクロロメタン溶液であってもメチャクチャ発煙するため、最初に使うときはかなりビビります。またセプタムが赤黒く焦げたようになるのでいろいろと心臓に悪いです。あと溶液状の試薬は比較的効果なのがネックですね。100 mL (BBr0.1 mol 相当) で 1万円強します。だいたい当量以上加えるので、意外に減りが早いです。

02. 塩化アルミニウム AlCl

こちらも三臭化ホウ素と同様の強ルイス酸ですが、その反応性はだいぶ抑えられています。無水物と六水和物が市販されていますが、通常ルイス酸としては無水物のほうを使用します。Friedel-Crafts アシル化反応によく用いられますね。BBr3と比べてかなり安価なのも良い点です。ジクロロメタン中、基質と混ぜて加熱するだけで O-脱メチル化が進行する場合もありますが、さまざまな改良法も報告されています。アセトニトリル中での反応が良い結果を与えるようです [1]

図2 AlCl3 による O-脱メチル化あれこれ (文献[1]より引用)

AlCl使用時の注意点としては、ビンを開けると塩化水素の煙が立つのでマスクをしてドラフトで扱うこと、潮解性があり、また表面は酸化皮膜により不活性化している場合が多いので、乳鉢などに秤量し素早くすり潰してから使用することなどが挙げられます。

03. 47%臭化水素酸 HBr

こちらはブレンステッド酸を用いる脱メチル化の常套手段です。反応機構は簡単で、酸素原子がプロトン化されたところで臭化物アニオンがアルキル基を引き抜き、O-脱アルキル化体とブロモメタンを与えます (図3)。やり方は基質に47% HBr水溶液をそのまま加えて 130˚C ほどに加熱します。基質が溶けにくくうまく進行しない場合は溶媒として酢酸を加えてやっても OK です。臭化リチウム LiBr [2]アリコート336 [3] を加える変法も報告されています。

図3 臭化水素酸による O-脱メチル化

筆者の経験では、熱または酸に弱い部分がなければ割と綺麗に進行します。ルイス酸でうまくいかなかった時、試しに少量放り込んでみるのもいいかもしれません。HBrは水溶液だけでなく、酢酸溶液も市販されています (https://www.tcichemicals.com/JP/ja/p/H0182)。

04. アルキルチオール

強酸を用いない条件として有用なのはアルキルチオールを用いた O-脱メチル化です。古典的なのは NaOH などの塩基性条件下エタンチオール EtSH を用いる条件ですが、低級チオール特有の悪臭が問題となります。そこで有用なのが長鎖チオールを用いた反応です。Chae は悪臭のない 1-ドデカンチオール CH3(CH2)11SH を用いた例を報告しています (図4) [4]

図4  ドデカンチオールを用いた O-脱メチル化

この反応は THF や1,4-ジオキサン中では reflux でも進行せず、NMPDMSO などの高沸点溶媒中 130˚C で加熱することにより 90%以上の良い収率を与えます。 ただし DMSO 中だと多少の副生成物が生じることから、NMP が最も優れた溶媒のようです。原報では窒素雰囲気下を必要としているところ、また熱に弱い化合物には不適なところがネックでしょうか。
エタンチオールに塩化アルミニウム AlCl3 などのルイス酸を共存させる方法も知られており、そちらは氷冷下でも進行するようです。

おわりに

以上の 4 条件は、脱メチル化・脱アルキル化の中でも基本中の基本となるものです。Greene”s Protective Group にはさまざまな試薬を用いた条件載っていますが、多くはルイス酸・ブレンステッド酸・チオールのような求核剤を用いたも

のの変法です。複雑な基質や位置選択性を望む場合などは種々適した条件があると考えられますが、できれば今回紹介した基本反応を合成の初期段階で試し、最初に述べたように別の保護基へさっさと付け替えてしまうことが望ましいでしょう。
次回はいくつか変わった条件を紹介したいと思います。

参考文献

  1. Sang, D.; Tu, X.; Tian, J.; He, Z.; and Yao, M.,  “Anchimerically Assisted Cleavage of Aryl Methyl Ethers by Aluminum Chloride-Sodium Iodide in Acetonitrile”, ChemistrySelect, 2018, 3, 10103-10107, DOI; 10.1002/slct.201802565.
  2. Li, Z.; Sutandar, E.; Goihl, T.; Zhang, X.; Pan, X., “Cleavage of ethers and demethylation of lignin in acidic concentrated lithium bromide (ACLB) solution”, Green Chem., 2020, 22, 7989-8001, DOI: 10.1039/d0gc02581j.
  3. Waghmode, S.B.; Mahal, G.;  Patil, V.P.; Renalson, K.; Singh, D., “Efficient Method for Demethylation of Aryl Methyl Ether Using Aliquat-336”, Syn. Commun, 2013, 43, 3272-3280, DOI: 10.1080/00397911.2013.772201.
  4. Chae, J., “Practical Demethylation of Aryl Methyl Ethers using an Odorless Thiol Reagent”, Arch. Pharm. Res. 2008, 31, 305-309. DOI: 10.1007/s12272-001-1156-y.

関連書籍

関連記事

保護基のお話
ベンジル保護基
p-メトキシベンジル保護基

DAICHAN

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 超臨界流体 Supercritical Fluid
  2. 多成分連結反応 Multicomponent Reaction…
  3. アトムエコノミー Atom Economy
  4. リード指向型合成 / Lead-Oriented Synthes…
  5. 輸出貿易管理令
  6. クロスカップリング反応 cross coupling react…
  7. 有機EL organic electroluminescence…
  8. 並行人工膜透過性試験 parallel artificial m…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高分子材料中の微小異物分析技術の実際【終了】
  2. NHC‐ZnBr2触媒を用いた二酸化炭素の末端エポキシドへの温和な付加環化反応
  3. 【書籍】化学探偵Mr.キュリー5
  4. ディーター・ゼーバッハ Dieter Seebach
  5. ヴェンキィ・ラマクリシュナン Venkatraman Ramakrishnan
  6. Spiber株式会社ってどんな会社?
  7. 自転車泥棒を臭いで撃退!?「スカンクロック」を考案
  8. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応
  9. セイファース・ギルバート アルキン合成 Seyferth-Gilbert Alkyne Synthesis
  10. クリンコヴィッチ反応 Kulinkovich Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
« 6月   8月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時4…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

オンライン講演会に参加してみた~学部生の挑戦記録~

hodaです。講演会やシンポジウムのオンライン化によって学部生でもいろいろな講演会にボタンひとつで参…

令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプシュ法や記憶媒体に関する資料が登録~

国立科学博物館は、平成20年度から重要科学技術史資料(愛称:未来技術遺産)の登録を実施しています。令…

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メ…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP