[スポンサーリンク]

chemglossary

O-脱メチル化・脱アルキル化剤 基礎編

[スポンサーリンク]

 

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足りないメチル基 (アルキル基) ですが、安価な市販試薬から合成計画を立てると、脱メチル化反応を行わざるを得ないこともあります。
「脱メチル化」でググったらサジェストにケムステと出てきたので、情報を求めている研究者がいるのだと思い、筆者の備忘録も兼ねてシリーズでまとめてみます。

※あくまでも代表的な反応のまとめです。メトキシ基の脱メチル化反応はできるだけ合成の初期に行い、さっさと別の保護基に付け替えてしまうのがベターでしょう。

01. 三臭化ホウ素 BBr3

O-脱アルキル化といえば、ルイス酸の使用が常套手段です。その中でも第一選択となるのは三臭化ホウ素 BBr3 だと思われます。 BBr3 は非常に強力なルイス酸で、O 原子の非共有電子対がホウ素原子の空軌道にアタックして錯体形成し O カチオンを生じます。次いで脱離したブロモアニオンがメチル基を引き抜き、ブロモメタンとアルコキシジブロモボランが生成します。アルコキシジブロモボランは加水分解によりホウ酸・臭化水素及び対応するヒドロキシ化合物になります。一連の scheme は図 1 に示します。

図1  BBr3によるアニソールのO-脱メチル化

BBr3 は高い反応性を有するため、低温条件下 (–78˚C ~ 0˚C) で反応を開始し、進行具合をチェックしながら徐々に昇温していくのが一般的です。また、水と激しく反応するためクエンチ時には細心の注意が必要です。近年は BBr3 のジクロロメタン溶液 (ca. 1 mol/L) が各社から市販されており、それを用いるのが簡便です。

ちなみにジクロロメタン溶液であってもメチャクチャ発煙するため、最初に使うときはかなりビビります。またセプタムが赤黒く焦げたようになるのでいろいろと心臓に悪いです。あと溶液状の試薬は比較的効果なのがネックですね。100 mL (BBr0.1 mol 相当) で 1万円強します。だいたい当量以上加えるので、意外に減りが早いです。

02. 塩化アルミニウム AlCl

こちらも三臭化ホウ素と同様の強ルイス酸ですが、その反応性はだいぶ抑えられています。無水物と六水和物が市販されていますが、通常ルイス酸としては無水物のほうを使用します。Friedel-Crafts アシル化反応によく用いられますね。BBr3と比べてかなり安価なのも良い点です。ジクロロメタン中、基質と混ぜて加熱するだけで O-脱メチル化が進行する場合もありますが、さまざまな改良法も報告されています。アセトニトリル中での反応が良い結果を与えるようです [1]

図2 AlCl3 による O-脱メチル化あれこれ (文献[1]より引用)

AlCl使用時の注意点としては、ビンを開けると塩化水素の煙が立つのでマスクをしてドラフトで扱うこと、潮解性があり、また表面は酸化皮膜により不活性化している場合が多いので、乳鉢などに秤量し素早くすり潰してから使用することなどが挙げられます。

03. 47%臭化水素酸 HBr

こちらはブレンステッド酸を用いる脱メチル化の常套手段です。反応機構は簡単で、酸素原子がプロトン化されたところで臭化物アニオンがアルキル基を引き抜き、O-脱アルキル化体とブロモメタンを与えます (図3)。やり方は基質に47% HBr水溶液をそのまま加えて 130˚C ほどに加熱します。基質が溶けにくくうまく進行しない場合は溶媒として酢酸を加えてやっても OK です。臭化リチウム LiBr [2]アリコート336 [3] を加える変法も報告されています。

図3 臭化水素酸による O-脱メチル化

筆者の経験では、熱または酸に弱い部分がなければ割と綺麗に進行します。ルイス酸でうまくいかなかった時、試しに少量放り込んでみるのもいいかもしれません。HBrは水溶液だけでなく、酢酸溶液も市販されています (https://www.tcichemicals.com/JP/ja/p/H0182)。

04. アルキルチオール

強酸を用いない条件として有用なのはアルキルチオールを用いた O-脱メチル化です。古典的なのは NaOH などの塩基性条件下エタンチオール EtSH を用いる条件ですが、低級チオール特有の悪臭が問題となります。そこで有用なのが長鎖チオールを用いた反応です。Chae は悪臭のない 1-ドデカンチオール CH3(CH2)11SH を用いた例を報告しています (図4) [4]

図4  ドデカンチオールを用いた O-脱メチル化

この反応は THF や1,4-ジオキサン中では reflux でも進行せず、NMPDMSO などの高沸点溶媒中 130˚C で加熱することにより 90%以上の良い収率を与えます。 ただし DMSO 中だと多少の副生成物が生じることから、NMP が最も優れた溶媒のようです。原報では窒素雰囲気下を必要としているところ、また熱に弱い化合物には不適なところがネックでしょうか。
エタンチオールに塩化アルミニウム AlCl3 などのルイス酸を共存させる方法も知られており、そちらは氷冷下でも進行するようです。

おわりに

以上の 4 条件は、脱メチル化・脱アルキル化の中でも基本中の基本となるものです。Greene”s Protective Group にはさまざまな試薬を用いた条件載っていますが、多くはルイス酸・ブレンステッド酸・チオールのような求核剤を用いたも

のの変法です。複雑な基質や位置選択性を望む場合などは種々適した条件があると考えられますが、できれば今回紹介した基本反応を合成の初期段階で試し、最初に述べたように別の保護基へさっさと付け替えてしまうことが望ましいでしょう。
次回はいくつか変わった条件を紹介したいと思います。

参考文献

  1. Sang, D.; Tu, X.; Tian, J.; He, Z.; and Yao, M.,  “Anchimerically Assisted Cleavage of Aryl Methyl Ethers by Aluminum Chloride-Sodium Iodide in Acetonitrile”, ChemistrySelect, 2018, 3, 10103-10107, DOI; 10.1002/slct.201802565.
  2. Li, Z.; Sutandar, E.; Goihl, T.; Zhang, X.; Pan, X., “Cleavage of ethers and demethylation of lignin in acidic concentrated lithium bromide (ACLB) solution”, Green Chem., 2020, 22, 7989-8001, DOI: 10.1039/d0gc02581j.
  3. Waghmode, S.B.; Mahal, G.;  Patil, V.P.; Renalson, K.; Singh, D., “Efficient Method for Demethylation of Aryl Methyl Ether Using Aliquat-336”, Syn. Commun, 2013, 43, 3272-3280, DOI: 10.1080/00397911.2013.772201.
  4. Chae, J., “Practical Demethylation of Aryl Methyl Ethers using an Odorless Thiol Reagent”, Arch. Pharm. Res. 2008, 31, 305-309. DOI: 10.1007/s12272-001-1156-y.

関連書籍

関連記事

保護基のお話
ベンジル保護基
p-メトキシベンジル保護基

DAICHAN

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 深共晶溶媒 Deep Eutectic Solvent
  2. コールドスプレーイオン化質量分析法 Cold Spray Ion…
  3. 金属-有機構造体 / Metal-Organic Framewo…
  4. 陽電子放射断層撮影 Positron Emmision Tomo…
  5. 分子モーター Molecular Motor
  6. 酵母還元 Reduction with Yeast
  7. HKUST-1: ベンゼンが囲むケージ状構造体
  8. 合成後期多様化法 Late-Stage Diversificat…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「石油化学」の新ネーミング募集!
  2. 医薬品のプロセス化学
  3. エナンチオ選択的付加反応による光学活性ピペリジン誘導体の合成
  4. Delta 6.0.0 for Win & Macがリリース!
  5. すごい分子 世界は六角形でできている
  6. ブラウンヒドロホウ素化反応 Brown Hydroboration
  7. 【チャンスは春だけ】フランスの博士課程に応募しよう!【給与付き】
  8. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  9. ジムロート転位 (共役 1,3-双極子開環体経由) Dimroth Rearrangement via A Conjugated 1,3-Dipole
  10. 庄野酸化 Shono Oxidation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
« 6月   8月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに…)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン・対面併設|進化する高分子材料 表面・界面制御 Advanced コース

開講期間●令和4年 2月  14日(月)、17日(木):基礎編●       21日(月)、…

ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮

第 360回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科 博士課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP