[スポンサーリンク]

一般的な話題

三中心四電子結合とは?

[スポンサーリンク]

初めまして、さかのうえと申します。先月修士課程を卒業し、4月から某試薬メーカーで勤務しています。大学院では有機化学、特に有機典型元素化学の分野で高配位化合物の研究を行ってきました。

この度、Chem-Stationに有機典型元素化学にまつわる記事をもっと増やしたいと思い、ケムステスタッフにしていただきました。未熟者ですが、よろしくお願いいたします。

本題ー三中心四電子結合

さて今回は、「三中心四電子結合」について解説したいと思います。

高周期典型元素の特徴の一つとして、形式的にオクテット則を超えた価電子を有する、”超原子価化合物”が多数安定に存在するという点が挙げられます。

特に超原子価ヨウ素化合物が有名ですね。この、超原子価化合物を形成する際の3つの原子の間の結合様式として提唱されているのが、三中心四電子結合です。Pimentel[1]とRundle[2]によって独自に提唱され、Musher[3]によってまとめられたため、Rundle-PimentelモデルRundle-Musherモデルとも呼ばれています。例として、以前の記事でも登場した、XeF2を挙げます。[4]

XeF2の分子構造はF-Xe-Fの直線型です。このF-Xe-F間の結合様式が、まさに三中心四電子結合です。この結合は次のように成り立っていると考えられています。

まず中央のキセノン原子の5p軌道の1つと、両端のフッ素原子のそれぞれの2p軌道が直線的に相互作用し、3つの原子上に広がる結合性軌道(φ1)と反結合性軌道(φ3)、両端に局在化した非結合性軌道(φ2)に分裂します。ここにフントの規則に従って4個の電子を収容すると、結合性軌道(φ1)、非結合性軌道(φ2)に2つずつ配置され、反結合性軌道(φ3)は空となります(下図)。

The Rundle–Pimentel orbital model for 3c–4e hypervalent complexes.

F-Xe-FのRundle-Pimentelモデル(図は文献[4]より抜粋)

3つの原子にまたがる結合性軌道に2電子が収容されるため結合力が生じますが、中心原子と両端の原子との間の結合次数は0.5となります。さらに両端に局在化した非結合性軌道にも2電子収容されるために、負電荷が両端に偏ることが考えられます。

XeF2のF-Xe-F結合に、Xe原子の最外殻軌道は5p軌道が一つしか使われていません。この時、残りの最外殻軌道(5s軌道1つ、5p軌道2つ)はsp2混成軌道を形成しており、いずれも非共有電子対が収容されていると考えられます。これらを踏まえると、XeF2の構造は非共有電子対を明記して、次のように表記できます。

XeF2の構造

非共有電子対も配位子の1種と考えると、XeF2は5配位で三方両錘構造を取っていることがわかります。これと同様に、5配位の超原子価化合物は基本的には三方両錘構造を取ります。いくつか例をあげてみます。

5配位超原子価化合物の例

これらの化合物を例に説明するとわかりやすいかと思いますが、三中心四電子結合で形成されている、中心原子の上下をアピカル位と呼び、sp2混成軌道で形成されている、同一平面上にある3つをエクアトリアル位と呼びます。(シクロヘキサンのいす型配座の水素はアキシアル位とエクアトリアル位でしたね。対になる言葉が異なるのは不思議です。)

三中心四電子結合は結合次数が0.5になると先に述べましたが、5つの配位子が同じであるPF5の結合長を挙げて確認してみます。P-Fapical 結合は1.577 Å、P-Fequatorial 結合は1.534 Åであることから、確かに三中心四電子結合は通常の単結合より伸長していることが見て取れますね。

結合が長いということは当然安定性が低下する訳です。Ⅲ価の超原子価ヨウ素酸化剤は、ヨウ素-アピカル位結合が開裂しやすく、開裂に伴ってオクテット則を満たすⅠ価のヨウ素化合物へ還元されることで、酸化剤として働きます。

ケムステの記事に、ちょくちょく現れる超原子価化合物。その考えの基礎となる三中心四電子結合の解説がなかったので、初歩の部分を解説してみました。皆さまの理解の助けに少しでもなれば嬉しいです。

 

参考文献

  1. Pimentel, G. C. J. Chem. Phys. 1951, 19, 446. doi:10.1063/1.1748245
  2. Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73, 4321. doi:10.1021/ja01153a086
  3. Musher, J. I. Angew. Chem. Int. Ed. Engl. 1969, 8, 54. doi:10.1002/anie.196900541
  4. Braïda, B; Hiberty, P. C. Nature Chem. 2013, 5, 417. doi:10.1038/nchem.1619

関連書籍

関連リンク

さかのうえ

投稿者の記事一覧

試薬メーカーに勤務しています。修士課程まで有機化学、特に有機典型元素化学を専攻していました。典型元素化学をもっと広めたいです。

関連記事

  1. 女性化学賞と私の歩み【世界化学年 女性化学賞受賞 特別イベント】…
  2. アルキン来ぬと目にはさやかに見えねども
  3. Carl Boschの人生 その7
  4. 元素名と中国語
  5. 「話すのが得意」でも面接が通らない人の特徴
  6. サイエンスアゴラの魅力-食用昆虫科学研究会・「蟲ソムリエ」中の人…
  7. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方と…
  8. 化学Webギャラリー@Flickr 【Part1】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 透明なカニ・透明な紙:バイオナノファイバーの世界
  2. マイクロフロー瞬間pHスイッチによるアミノ酸NCAの高効率合成
  3. ピエトロ・ビギネリ Pietro Biginelli
  4. 腎細胞がん治療の新薬ベルツチファン製造プロセスの開発
  5. 小林製薬、「神薬」2種類を今春刷新
  6. 科学技術教育協会 「大学化合物プロジェクト」が第2期へ
  7. セントラル硝子、工程ノウハウも発明報奨制度対象に
  8. クオラムセンシング Quorum Sensing
  9. 第9回慶應有機化学若手シンポジウム
  10. 宇宙に輝く「鄒承魯星」、中国の生物化学の先駆者が小惑星の名前に

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

注目情報

最新記事

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

第2回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、4月21日(金)に第2…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2

前回のPart 1に引き続き第二弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較

開催日:2023/03/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1

待ちに待った対面での日本化学会春季年会。なんと4年ぶりなんですね。今年は…

グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応

第493回のスポットライトリサーチは、東京農工大学院 工学府生命工学専攻 生命有機化学講座(長澤・寺…

カーボンニュートラルへの化学工学: CO₂分離回収,資源化からエネルギーシステム構築まで

概要いま我々は,カーボンニュートラルの実現のために,最も合理的なエネルギー供給と利用の選…

クリック反応を用いて、機能性分子を持つイナミド類を自在合成!

第492 回のスポットライトリサーチは、岐阜薬科大学 合成薬品製造学研究室 (伊…

セライトのちょっとマニアックな話

セライト (Celite®) は Imerys Minerals, Inc. の登録…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP