[スポンサーリンク]

化学者のつぶやき

ホウ素が隣接した不安定なカルベン!ジボリルカルベンの生成

[スポンサーリンク]

p受容性置換基をもち不安定なジボリルカルベン(DBC)の新たな生成法が開発された。さらに、NMR実験からDBCは中性のホウ素化合物として最も強いルイス酸性を示すことが明らかにされた。

NHCと相反する電子配置をもつDBCの新たな生成法の開発

N-ヘテロ環状カルベン(NHC)は、隣接する窒素がp供与性置換基としてカルベンのp軌道に電子供与するため、s型軌道に非共有電子対が収納された電子配置をとる(図1A左)[1]。NHCはこの非共有電子対によりルイス塩基性を示すため、配位子として盛んに研究されている。一方で、ジボリルカルベン(DBC)は、隣接するホウ素がp受容性置換基としてカルベンの非共有電子対を受容するため、s型軌道が空となる電子配置をとる(図1A右)。この特異な電子配置からDBCはルイス酸性を示す一方で、DBCのカルベン炭素はオクテット則を満たさない上にp受容性置換基をもつため不安定であることが予想される。

不安定なDBCは、理論研究と実験研究が数例報告されているのみの未開拓の化学種である。BerndtらおよびKassaeeらは、DBCにおいてホウ素の空軌道とカルベンの非共有電子対が相互作用し、空のp軌道もしくはs型軌道をもつことを示した(図1B)[2]。実験的には、Berndtらがジボラメチレンシクロプロパンへのルイス塩基の添加によりDBC誘導体を単離している(図1C)[3]。これはジボラメチレンシクロプロパンがDBCに異性化することを示唆している。この報告は平衡で生じるDBCを捕捉した唯一の例であり、依然としてDBCを平衡中間体でなく生成させる方法は知られていない。

東京大学の楠本准教授らは、著者らの以前の報告を踏襲し、環状DBCおよびその前駆体を設計した(図1D)[4, 5]。金属とハロゲンによる安定化を受けるDBC前駆体の有機アルミニウム試薬を用いた脱ハロゲン化によるDBCの定量的な生成法の確立を目指した。

図1. (A) N-ヘテロ環状カルベン(NHC)とジボリルカルベン(DBC)の電子配置、(B) 理論計算されたDBC、(C) ルイス塩基に捕捉されたDBC、(D) 前駆体とルイス酸によるDBCの生成

 

“Synthesis, Characterization, and Trapping of a Cyclic Diborylcarbene, an Electrophilic Carbene”

Shibutani, Y.; Kusumoto, S.; Nozaki, K. J. Am. Chem. Soc. 2023, 145, 16186–16192.

DOI: 10.1021/jacs.3c04933

論文著者の紹介

研究者:楠本周平

研究者の経歴:

–2009                             B.Sc. University of Tokyo, Japan

2009–2014                  Ph.D. University of Tokyo, Japan (Prof. Kyoko Nozaki) 

2014                               Postdoc, University of Tokyo, Japan (Prof. Kyoko Nozaki)

2014–2023                  Assistant professor, University of Tokyo, Japan (Prof. Kyoko Nozaki)

2023–                             Associate professor, University of Tokyo, Japan (Prof. Kyoko Nozaki)

研究内容:金属–配位子協働作用を用いた結合切断/形成反応の開発、ヘテロベンゼンを含む新規配位子の合成

論文の概要

図2AにDBC前駆体5Fおよび5Clの合成経路を示す。まず、既法に従い合成した1にメシチルリチウムを加え、メシチル化体2へ導いた後に、塩基を作用させることで3を得た[5]5Fの合成の際には、得られた3とNFSIを反応させることでモノフルオロ化体4Fとし、強塩基を作用させて前駆体5Fを合成した。一方、5Clの合成では3にNCSを添加し、ジクロロ化体4Clへと変換した後に、カリウムグラファイト(KC8)による還元で5Clへ導いた。合成した5F5Clの構造は、いずれもX線構造解析により明らかにしている(詳しくは論文を参照されたい)。

次に、合成したDBC前駆体5FからDBCの生成を試みた(図2B)。重ベンゼン中5Fにルイス酸(Al(C6F5)3)を作用させることで、5FのC4位炭素の13C NMRピークが169 ppmから242 ppmへシフトした。これは、計算値(5FのC4位: 169 ppm、6のカルベン: 240 ppm)と良い一致を示した。また、19F NMRにおいてAl(C6F5)3に捕捉されたフルオリド([F–Al(C6F5)3])のピークも観測された。これらのNMR実験から6の生成が確認された。さらに、ESI-TOF MSからDBCのカリウムカチオン付加体7・K+の質量ピークが観測された。以上のNMR実験および質量分析からDBCの生成を確認し、これはDBCを平衡中間体でなく生成する新たな手法となる。

続いて、著者らは7のルイス酸性度を評価した(図2C)。5Clの加熱により発生させたDBC7のトリメチルホスフィン複合体は、31P NMRにおいて7.9 ppmにピークを示した。これは頻用されるルイス酸(B(C6F5)3: –6.1 ppm, BF3: –28.5 ppm)よりも著しく低磁場側へシフトしていた。このことから、空のs型軌道をもつDBCは強いルイス酸性を示し、相反する電子配置でありルイス塩基として働くNHCとの対極な物性が明らかとなった。

図2. (A) DBC前駆体5xの合成、(B) DBCのルイス酸をもちいた生成、(C) DBCのルイス酸性度の評価

以上、p受容性置換基をもつ不安定カルベン(DBC)の新たな生成法が確立された。この報告を皮切りに、今後DBCの特異な反応性を利用した反応の開発が期待される。

参考文献

  1. Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chem. Rev. 2020, 120, 1981–2048. DOI: 10.1021/acs.chemrev.9b00634
  2. (a) Menzel, M.; Winkler, H. J.; Ablelom, T.; Steiner, D.; Fau, S.; Frenking, G.; Massa, W.; Berndt, A. Diborylcarbenes as Reactive Intermediates in Double 1,2-Rearrangements with Low Activation Enthalpies. Chem., Int. Ed. 1995, 34, 1340–1343. DOI: 10.1002/anie.199513401 (b) Kassaee, M. Z.; Koohi, M.; Mohammadi, R.; Ghavami, M. 2,2,9,9-Tetramethylcyclonona-3,5,7-trienylidene vs. Its Heterocyclic Analogues: A Quest for Stable Carbenes at DFT. J. Phys. Org. Chem. 2013, 26, 908–916. DOI: 10.1002/poc.3189
  3. Budzelaar, P. H. M.; Schleyer, P. von R.; Krogh-Jespersen, K. An Extraordinary Structure and Topomerization Mechanism for“Diboramethylenecyclopropane.” Angew. Chem., Int. Ed. 1984, 23, 825–826. DOI: 10.1002/anie.198408251
  4. Simmons, H. E.; Smith, R. D. A New Synthesis of Cyclopropanes from Olefins. J. Am. Chem. Soc. 1958, 80, 5323–5324. DOI: 10.1021/ja01552a080
  5. Kishino, M.; Takaoka, S.; Shibutani, Y.; Kusumoto, S.; Nozaki, K. Synthesis and Reactivity of PC(sp3) P-Pincer Iridium Complexes Bearing a Diborylmethyl Anion. Dalton Trans. 2022, 51, 5009–5015. DOI: 1039/D2DT00513A

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 核酸合成試薬(ホスホロアミダイト法)
  2. 【日産化学】新卒採用情報(2025卒)
  3. KISTEC教育講座 「社会実装を目指すマイクロ流体デバイス」 …
  4. アルカロイド骨格を活用した円偏光発光性8の字型分子の開発 ~天然…
  5. 付設展示会に行…けなくなっちゃった(泣)
  6. TLCと反応の追跡
  7. カーボンナノベルト合成初成功の舞台裏 (2)
  8. 超大画面ディスプレイ(シプラ)実現へ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学実験系YouTuber
  2. 「架橋ナノゲル」を応用したがんワクチンDDS
  3. 分子標的薬、手探り続く
  4. シアノヒドリンをカルボン酸アミドで触媒的に水和する
  5. 大学入試のあれこれ ①
  6. スルホキシド/セレノキシドのsyn-β脱離 Syn-β-elimination of Sulfoxide/Selenoxide
  7. 安全なジアゾメタン原料
  8. トランジスタの三本足を使ってsp2骨格の分子模型をつくる
  9. 第168回―「化学結晶学から化学結合を理解する」Guru Row教授
  10. 第129回―「環境汚染有機物質の運命を追跡する」Scott Mabury教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP