[スポンサーリンク]

化学者のつぶやき

ホウ素が隣接した不安定なカルベン!ジボリルカルベンの生成

[スポンサーリンク]

p受容性置換基をもち不安定なジボリルカルベン(DBC)の新たな生成法が開発された。さらに、NMR実験からDBCは中性のホウ素化合物として最も強いルイス酸性を示すことが明らかにされた。

NHCと相反する電子配置をもつDBCの新たな生成法の開発

N-ヘテロ環状カルベン(NHC)は、隣接する窒素がp供与性置換基としてカルベンのp軌道に電子供与するため、s型軌道に非共有電子対が収納された電子配置をとる(図1A左)[1]。NHCはこの非共有電子対によりルイス塩基性を示すため、配位子として盛んに研究されている。一方で、ジボリルカルベン(DBC)は、隣接するホウ素がp受容性置換基としてカルベンの非共有電子対を受容するため、s型軌道が空となる電子配置をとる(図1A右)。この特異な電子配置からDBCはルイス酸性を示す一方で、DBCのカルベン炭素はオクテット則を満たさない上にp受容性置換基をもつため不安定であることが予想される。

不安定なDBCは、理論研究と実験研究が数例報告されているのみの未開拓の化学種である。BerndtらおよびKassaeeらは、DBCにおいてホウ素の空軌道とカルベンの非共有電子対が相互作用し、空のp軌道もしくはs型軌道をもつことを示した(図1B)[2]。実験的には、Berndtらがジボラメチレンシクロプロパンへのルイス塩基の添加によりDBC誘導体を単離している(図1C)[3]。これはジボラメチレンシクロプロパンがDBCに異性化することを示唆している。この報告は平衡で生じるDBCを捕捉した唯一の例であり、依然としてDBCを平衡中間体でなく生成させる方法は知られていない。

東京大学の楠本准教授らは、著者らの以前の報告を踏襲し、環状DBCおよびその前駆体を設計した(図1D)[4, 5]。金属とハロゲンによる安定化を受けるDBC前駆体の有機アルミニウム試薬を用いた脱ハロゲン化によるDBCの定量的な生成法の確立を目指した。

図1. (A) N-ヘテロ環状カルベン(NHC)とジボリルカルベン(DBC)の電子配置、(B) 理論計算されたDBC、(C) ルイス塩基に捕捉されたDBC、(D) 前駆体とルイス酸によるDBCの生成

 

“Synthesis, Characterization, and Trapping of a Cyclic Diborylcarbene, an Electrophilic Carbene”

Shibutani, Y.; Kusumoto, S.; Nozaki, K. J. Am. Chem. Soc. 2023, 145, 16186–16192.

DOI: 10.1021/jacs.3c04933

論文著者の紹介

研究者:楠本周平

研究者の経歴:

–2009                             B.Sc. University of Tokyo, Japan

2009–2014                  Ph.D. University of Tokyo, Japan (Prof. Kyoko Nozaki) 

2014                               Postdoc, University of Tokyo, Japan (Prof. Kyoko Nozaki)

2014–2023                  Assistant professor, University of Tokyo, Japan (Prof. Kyoko Nozaki)

2023–                             Associate professor, University of Tokyo, Japan (Prof. Kyoko Nozaki)

研究内容:金属–配位子協働作用を用いた結合切断/形成反応の開発、ヘテロベンゼンを含む新規配位子の合成

論文の概要

図2AにDBC前駆体5Fおよび5Clの合成経路を示す。まず、既法に従い合成した1にメシチルリチウムを加え、メシチル化体2へ導いた後に、塩基を作用させることで3を得た[5]5Fの合成の際には、得られた3とNFSIを反応させることでモノフルオロ化体4Fとし、強塩基を作用させて前駆体5Fを合成した。一方、5Clの合成では3にNCSを添加し、ジクロロ化体4Clへと変換した後に、カリウムグラファイト(KC8)による還元で5Clへ導いた。合成した5F5Clの構造は、いずれもX線構造解析により明らかにしている(詳しくは論文を参照されたい)。

次に、合成したDBC前駆体5FからDBCの生成を試みた(図2B)。重ベンゼン中5Fにルイス酸(Al(C6F5)3)を作用させることで、5FのC4位炭素の13C NMRピークが169 ppmから242 ppmへシフトした。これは、計算値(5FのC4位: 169 ppm、6のカルベン: 240 ppm)と良い一致を示した。また、19F NMRにおいてAl(C6F5)3に捕捉されたフルオリド([F–Al(C6F5)3])のピークも観測された。これらのNMR実験から6の生成が確認された。さらに、ESI-TOF MSからDBCのカリウムカチオン付加体7・K+の質量ピークが観測された。以上のNMR実験および質量分析からDBCの生成を確認し、これはDBCを平衡中間体でなく生成する新たな手法となる。

続いて、著者らは7のルイス酸性度を評価した(図2C)。5Clの加熱により発生させたDBC7のトリメチルホスフィン複合体は、31P NMRにおいて7.9 ppmにピークを示した。これは頻用されるルイス酸(B(C6F5)3: –6.1 ppm, BF3: –28.5 ppm)よりも著しく低磁場側へシフトしていた。このことから、空のs型軌道をもつDBCは強いルイス酸性を示し、相反する電子配置でありルイス塩基として働くNHCとの対極な物性が明らかとなった。

図2. (A) DBC前駆体5xの合成、(B) DBCのルイス酸をもちいた生成、(C) DBCのルイス酸性度の評価

以上、p受容性置換基をもつ不安定カルベン(DBC)の新たな生成法が確立された。この報告を皮切りに、今後DBCの特異な反応性を利用した反応の開発が期待される。

参考文献

  1. Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chem. Rev. 2020, 120, 1981–2048. DOI: 10.1021/acs.chemrev.9b00634
  2. (a) Menzel, M.; Winkler, H. J.; Ablelom, T.; Steiner, D.; Fau, S.; Frenking, G.; Massa, W.; Berndt, A. Diborylcarbenes as Reactive Intermediates in Double 1,2-Rearrangements with Low Activation Enthalpies. Chem., Int. Ed. 1995, 34, 1340–1343. DOI: 10.1002/anie.199513401 (b) Kassaee, M. Z.; Koohi, M.; Mohammadi, R.; Ghavami, M. 2,2,9,9-Tetramethylcyclonona-3,5,7-trienylidene vs. Its Heterocyclic Analogues: A Quest for Stable Carbenes at DFT. J. Phys. Org. Chem. 2013, 26, 908–916. DOI: 10.1002/poc.3189
  3. Budzelaar, P. H. M.; Schleyer, P. von R.; Krogh-Jespersen, K. An Extraordinary Structure and Topomerization Mechanism for“Diboramethylenecyclopropane.” Angew. Chem., Int. Ed. 1984, 23, 825–826. DOI: 10.1002/anie.198408251
  4. Simmons, H. E.; Smith, R. D. A New Synthesis of Cyclopropanes from Olefins. J. Am. Chem. Soc. 1958, 80, 5323–5324. DOI: 10.1021/ja01552a080
  5. Kishino, M.; Takaoka, S.; Shibutani, Y.; Kusumoto, S.; Nozaki, K. Synthesis and Reactivity of PC(sp3) P-Pincer Iridium Complexes Bearing a Diborylmethyl Anion. Dalton Trans. 2022, 51, 5009–5015. DOI: 1039/D2DT00513A

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学者の単語登録テクニック
  2. 柴田科学 合成反応装置ケミストプラザ CP-400型をデモしてみ…
  3. 地域の光る化学企業たち-2
  4. 明るい未来へ~有機薄膜太陽電池でエネルギー変換効率7.4%~
  5. 留学せずに英語をマスターできるかやってみた(7年目)(留学後編)…
  6. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  7. メーカーで反応性が違う?パラジウムカーボンの反応活性
  8. ニセ試薬のサプライチェーン

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 日本薬学会第139年会 付設展示会ケムステキャンペーン
  2. 実現思いワクワク 夢語る日本の化学者
  3. 武田薬品工業、米バイオベンチャー買収へ 280億円で
  4. 第153回―「ネットワーク無機材料の結晶学」Micheal O’Keeffe教授
  5. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環合成・モノアシル酒石酸触媒・不斉ヒドロアリール化・機能性ポリペプチド
  6. 「オプジーボ」の特許とおカネ
  7. タミフルの新規合成法・その3
  8. 日本に居ながら、ナマの英語に触れる工夫
  9. ケムステ版・ノーベル化学賞候補者リスト【2016年版】
  10. 【3/10開催】 高活性酸化触媒の可能性 第1回Wako有機合成セミナー 富士フイルム和光純薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/06/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

N-オキシドの性質と創薬における活用

N-オキシドは一部の天然物に含まれ、食品・医薬品などの代謝物にも見られるほか、医…

未来を切り拓く創薬DX:多角的な視点から探る最新トレンド

申込みはこちら次世代の創薬研究をリードするために、デジタルトランスフォーメーション(DX…

ファラデーのつくった世界!:−ロウソクの科学が歴史を変えた

こんにちは、Spectol21です!ノーベル賞受賞の吉野彰先生が、吉野先生の研究者と…

接着系材料におけるmiHub活用事例とCSサポートのご紹介

開催日:2024/06/12 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

水素原子一個で強力な触媒をケージング ――アルツハイマー病関連のアミロイドを低分子で副作用を抑えて分解する――

第 619 回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学…

ミツバチに付くダニに効く化学物質の研究開発のはなし

今回は東京大学大学院有機化学研究室 滝川 浩郷先生、小倉 由資先生が主導されている研究内容につき…

化学結合の常識が変わる可能性!形成や切断よりも「回転」プロセスが実は難しい有機反応

第 617 回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 有機…

【書評】元素楽章ー擬人化でわかる元素の世界

元素の特性に基づくキャラクターデザインとフィクションの要素を融合させ,物語にまで昇華させた,待望…

デルゴシチニブ(Delgocitinib)のはなし 日本発の非ステロイド系消炎外用薬について

Tshozoです。 小さいころ法事などの集まりで爺様方が集まってやれ体の不調だの通院だのと盛…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP