[スポンサーリンク]

化学者のつぶやき

ホウ素が隣接した不安定なカルベン!ジボリルカルベンの生成

[スポンサーリンク]

p受容性置換基をもち不安定なジボリルカルベン(DBC)の新たな生成法が開発された。さらに、NMR実験からDBCは中性のホウ素化合物として最も強いルイス酸性を示すことが明らかにされた。

NHCと相反する電子配置をもつDBCの新たな生成法の開発

N-ヘテロ環状カルベン(NHC)は、隣接する窒素がp供与性置換基としてカルベンのp軌道に電子供与するため、s型軌道に非共有電子対が収納された電子配置をとる(図1A左)[1]。NHCはこの非共有電子対によりルイス塩基性を示すため、配位子として盛んに研究されている。一方で、ジボリルカルベン(DBC)は、隣接するホウ素がp受容性置換基としてカルベンの非共有電子対を受容するため、s型軌道が空となる電子配置をとる(図1A右)。この特異な電子配置からDBCはルイス酸性を示す一方で、DBCのカルベン炭素はオクテット則を満たさない上にp受容性置換基をもつため不安定であることが予想される。

不安定なDBCは、理論研究と実験研究が数例報告されているのみの未開拓の化学種である。BerndtらおよびKassaeeらは、DBCにおいてホウ素の空軌道とカルベンの非共有電子対が相互作用し、空のp軌道もしくはs型軌道をもつことを示した(図1B)[2]。実験的には、Berndtらがジボラメチレンシクロプロパンへのルイス塩基の添加によりDBC誘導体を単離している(図1C)[3]。これはジボラメチレンシクロプロパンがDBCに異性化することを示唆している。この報告は平衡で生じるDBCを捕捉した唯一の例であり、依然としてDBCを平衡中間体でなく生成させる方法は知られていない。

東京大学の楠本准教授らは、著者らの以前の報告を踏襲し、環状DBCおよびその前駆体を設計した(図1D)[4, 5]。金属とハロゲンによる安定化を受けるDBC前駆体の有機アルミニウム試薬を用いた脱ハロゲン化によるDBCの定量的な生成法の確立を目指した。

図1. (A) N-ヘテロ環状カルベン(NHC)とジボリルカルベン(DBC)の電子配置、(B) 理論計算されたDBC、(C) ルイス塩基に捕捉されたDBC、(D) 前駆体とルイス酸によるDBCの生成

 

“Synthesis, Characterization, and Trapping of a Cyclic Diborylcarbene, an Electrophilic Carbene”

Shibutani, Y.; Kusumoto, S.; Nozaki, K. J. Am. Chem. Soc. 2023, 145, 16186–16192.

DOI: 10.1021/jacs.3c04933

論文著者の紹介

研究者:楠本周平

研究者の経歴:

–2009                             B.Sc. University of Tokyo, Japan

2009–2014                  Ph.D. University of Tokyo, Japan (Prof. Kyoko Nozaki) 

2014                               Postdoc, University of Tokyo, Japan (Prof. Kyoko Nozaki)

2014–2023                  Assistant professor, University of Tokyo, Japan (Prof. Kyoko Nozaki)

2023–                             Associate professor, University of Tokyo, Japan (Prof. Kyoko Nozaki)

研究内容:金属–配位子協働作用を用いた結合切断/形成反応の開発、ヘテロベンゼンを含む新規配位子の合成

論文の概要

図2AにDBC前駆体5Fおよび5Clの合成経路を示す。まず、既法に従い合成した1にメシチルリチウムを加え、メシチル化体2へ導いた後に、塩基を作用させることで3を得た[5]5Fの合成の際には、得られた3とNFSIを反応させることでモノフルオロ化体4Fとし、強塩基を作用させて前駆体5Fを合成した。一方、5Clの合成では3にNCSを添加し、ジクロロ化体4Clへと変換した後に、カリウムグラファイト(KC8)による還元で5Clへ導いた。合成した5F5Clの構造は、いずれもX線構造解析により明らかにしている(詳しくは論文を参照されたい)。

次に、合成したDBC前駆体5FからDBCの生成を試みた(図2B)。重ベンゼン中5Fにルイス酸(Al(C6F5)3)を作用させることで、5FのC4位炭素の13C NMRピークが169 ppmから242 ppmへシフトした。これは、計算値(5FのC4位: 169 ppm、6のカルベン: 240 ppm)と良い一致を示した。また、19F NMRにおいてAl(C6F5)3に捕捉されたフルオリド([F–Al(C6F5)3])のピークも観測された。これらのNMR実験から6の生成が確認された。さらに、ESI-TOF MSからDBCのカリウムカチオン付加体7・K+の質量ピークが観測された。以上のNMR実験および質量分析からDBCの生成を確認し、これはDBCを平衡中間体でなく生成する新たな手法となる。

続いて、著者らは7のルイス酸性度を評価した(図2C)。5Clの加熱により発生させたDBC7のトリメチルホスフィン複合体は、31P NMRにおいて7.9 ppmにピークを示した。これは頻用されるルイス酸(B(C6F5)3: –6.1 ppm, BF3: –28.5 ppm)よりも著しく低磁場側へシフトしていた。このことから、空のs型軌道をもつDBCは強いルイス酸性を示し、相反する電子配置でありルイス塩基として働くNHCとの対極な物性が明らかとなった。

図2. (A) DBC前駆体5xの合成、(B) DBCのルイス酸をもちいた生成、(C) DBCのルイス酸性度の評価

以上、p受容性置換基をもつ不安定カルベン(DBC)の新たな生成法が確立された。この報告を皮切りに、今後DBCの特異な反応性を利用した反応の開発が期待される。

参考文献

  1. Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chem. Rev. 2020, 120, 1981–2048. DOI: 10.1021/acs.chemrev.9b00634
  2. (a) Menzel, M.; Winkler, H. J.; Ablelom, T.; Steiner, D.; Fau, S.; Frenking, G.; Massa, W.; Berndt, A. Diborylcarbenes as Reactive Intermediates in Double 1,2-Rearrangements with Low Activation Enthalpies. Chem., Int. Ed. 1995, 34, 1340–1343. DOI: 10.1002/anie.199513401 (b) Kassaee, M. Z.; Koohi, M.; Mohammadi, R.; Ghavami, M. 2,2,9,9-Tetramethylcyclonona-3,5,7-trienylidene vs. Its Heterocyclic Analogues: A Quest for Stable Carbenes at DFT. J. Phys. Org. Chem. 2013, 26, 908–916. DOI: 10.1002/poc.3189
  3. Budzelaar, P. H. M.; Schleyer, P. von R.; Krogh-Jespersen, K. An Extraordinary Structure and Topomerization Mechanism for“Diboramethylenecyclopropane.” Angew. Chem., Int. Ed. 1984, 23, 825–826. DOI: 10.1002/anie.198408251
  4. Simmons, H. E.; Smith, R. D. A New Synthesis of Cyclopropanes from Olefins. J. Am. Chem. Soc. 1958, 80, 5323–5324. DOI: 10.1021/ja01552a080
  5. Kishino, M.; Takaoka, S.; Shibutani, Y.; Kusumoto, S.; Nozaki, K. Synthesis and Reactivity of PC(sp3) P-Pincer Iridium Complexes Bearing a Diborylmethyl Anion. Dalton Trans. 2022, 51, 5009–5015. DOI: 1039/D2DT00513A
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学協会誌2018年10月号:生物発光・メタル化アミノ酸…
  2. UCLAにおける死亡事故で指導教授が刑事告訴される
  3. アブノーマルNHC
  4. 第七回ケムステVプレミアレクチャー「触媒との『掛け算』で研究者を…
  5. アメリカで Ph.D. を取る –エッセイを書くの巻– (後編)…
  6. SciFinder Future Leaders 2017: プ…
  7. マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を…
  8. Elsevierのニッチな化学論文誌たち

注目情報

ピックアップ記事

  1. 直接クプラート化によるフルオロアルキル銅錯体の形成と応用
  2. 反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】
  3. 化学Webギャラリー@Flickr 【Part 3】
  4. アロタケタールの全合成
  5. 特許の基礎知識(3) 方法特許に注意! カリクレイン事件の紹介
  6. ライマー・チーマン反応 Reimer-Tiemann Reaction
  7. 【PR】 Chem-Stationで記事を書いてみませんか?【スタッフ募集】
  8. 【5月開催】第八回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の密着性向上剤としての利用 -プライマーとしての利用-
  9. 新生HGS分子構造模型を試してみた
  10. 広範な反応性代謝物を検出する蛍光トラッピング剤 〜毒性の黒幕を捕まえろ〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

はじめから組み込んじゃえ!Ambiguine P の短工程合成!

Ambiguine Pの特徴的な6-5-6-7-6多環縮環骨格を、生合成を模倣したカスケード環化反応…

融合する知とともに化学の視野を広げよう!「リンダウ・ノーベル賞受賞者会議」参加者募集中!

ドイツの保養地リンダウで毎年夏に1週間程度の日程で開催される、リンダウ・ノーベル賞受賞者会議(Lin…

ダイヤモンド半導体について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、究極の…

有機合成化学協会誌2025年6月号:カルボラン触媒・水中有機反応・芳香族カルボン酸の位置選択的変換・C(sp2)-H官能基化・カルビン錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年6月号がオンラインで公開されています。…

【日産化学 27卒】 【7/10(木)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会

現役研究者18名・内定者(26卒)9名が参加!日産化学について・就職活動の進め方・研究職のキャリアに…

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP