[スポンサーリンク]

化学者のつぶやき

中性ケイ素触媒でヒドロシリル化

[スポンサーリンク]

分子内のカルボニル部位を選択的に還元する手法の一つとして、ヒドロシリル化があります。
この、酸素-炭素二重結合にケイ素と水素がそれぞれ付加する反応は基本的に発熱反応ですが、反応を速やかに進行させるには適切な触媒を利用する必要があります。
そのため、これまでに様々な遷移金属触媒が開発されてきています。

典型元素触媒

一方、遷移金属を触媒中心としない系もいくつか報告されていて、これまでに、中性およびカチオン性のホウ素化合物(A)と(B)を用いた例が、PiersとDenmarkらによってそれぞれ報告されています。[1] さらに、カチオン性ケイ素化合物群(C)を用いた例もいくつか報告されています。[2]

 

rk20150502fig0

 

 

さて、ごく最近、カリフォルニア大学・バークレー校のTilley、Bergmanらによって、中性ケイ素化合物がヒドロホウ素化の触媒となる例が報告されていたので紹介したいと思います。

 

Liberman-Martin, A. L.; Bergman, R. G.; Tilley, T. D.  J. Am. Chem. Soc. 2015, 137, 5328-5331, DOI: 10.1021/jacs.5b02807

 

著者らはまずフッ素置換したカテコール基を二つケイ素上に導入した化合物(1)を合成しました。次に、と[S(NMe2)3][F2SiMe3]との反応から、フッ素置換シリカート()を得ています。また、とPhCONiPr2との反応では、付加体()が得られています。

 

rk20150502fig1

いずれの生成物も、X線構造解析によってその分子構造を決定していて、ケイ素周りが5配位であることがわかります(下図*原著論文より)。このことは、四配位のケイ素中心がルイス酸として働くことを示しています。SIも含め、論文中には、軌道・混成などについての細かい議論はされていませんが、おそらく四角錐の分子構造内に歪んだ3中心4電子結合を含む電子状態なのでしょう。[3]

 

rk20150502figx-ray2

 

 

さらに著者らは、のルイス酸としての強さ・程度を見積もるためにGutmann-Beckett法[4]を利用し、31P NMRの測定結果から、がフッ素置換されていないその類縁体やB(C6F5)3よりも強いルイス酸であることを確認しています。

次に著者らは、化合物を触媒とするヒドロシリル化反応を検討しています。
5mol%の存在下、アルデヒド()のヒドロシリル化反応は室温下で進行し、対応するシリルエーテル()が高収率(>90%)で得られています。

 

rk20150502fig2

 

電子求引基が置換したアルデヒドに基質が限られているようですが、ぶっちゃけ、反応自体はほかの触媒でもいくものなので、基質汎用性の高さうんぬんよりも、もう少し基礎的な部分に筆者は重要性を感じています。
では、機構に着目してみましょう。
提案されている反応機構は以下に示すとおり。

 

 

 

rk20150502fig3

 

(i)アルデヒド()のカルボニル部位がのケイ素に配位して活性化される。
(ii)Et3SiHから水素がカルボニル炭素に転移することで、シリカート中間体()が発生
(iii)Et3SiカチオンによるからOCH2Rの引き抜きによってシリルエーテル()が生成。

さて、注目すべきは、反応の第一段階目。中性ケイ素がカルボニル部位を活性化しています。ルイス塩基との当量反応からが得られていたので、類似の中間体が触媒機構に含まれていてもリーズナブルですよね。

実は、上述した中性なホウ素化合物(A)による触媒反応では、ホウ素がカルボニル酸素に配位することでC=O結合が活性化されるという機構ではなく、基質のヒドロシランからホウ素が水素を引き抜いた結果生じるシリルカチオン(C)が、カルボニルを活性化していると考えられています。[1b] つまり、遷移金属を用いない場合、実際に触媒として働いていたこれまでの活性種はカチオン性の化合物であった、ということになります(*全ての系がそうだと一般化することはまだできないと思いますが)。
そんな中、今回の成果は、正真正銘、中性なケイ素化合物が、ヒドロホウ素化反応を触媒的に促進する、初めての例だと思います。

中性4配位状態からでも5配位状態(さらには6配位も)を導ける高周期元素ならではの特徴的な性質に着目し、さらに置換基によってそのルイス酸性を制御することで触媒にまで活かすことができた、興味深い成果です。
これまでのカチオン性の典型元素触媒を用いた系では、過剰還元などの副反応の問題点があったので、中性ケイ素ならではの触媒反応が開発されるか、今後の展開に注目です。

 

参考文献

  1. (a) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440. DOI: 10.1021/ja961536g; (b) Denmark, S. E.; Ueki, Y. Organometallics 2013, 32, 6631. DOI: 10.1021/om400582k
  2.  (a) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090. DOI: 10.1021/jo991828a; (b) Kira, M.; Hino, T.; Sakurai, H. Chem. Lett. 1992, 555. DOI:10.1246/cl.1992.555; (c) Müther, K.; Oestreich, M. Chem. Commun. 2011, 47, 334. DOI: 10.1039/C0CC02139C
  3.  「超原子価,高配位状態を利用する有機合成化学」玉尾皓平
  4. (a) Mayer, U.; Gutmann, V.; Gerger, W. Monatsh. Chem. 1975, 106, 1235. (b) Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Varma, K. S. Polymer 1996, 37, 4629. DOI:10.1016/0032-3861(96)00323-0

 

関連書籍

 

関連記事

  1. 赤絵磁器を彩る絵具:その特性解明と改良
  2. 電子デバイス製造技術 ーChemical Times特集より
  3. 海外でのアカデミックポジションの公開インタビュー
  4. 水素結合水H4O
  5. 複雑にインターロックした自己集合体の形成機構の解明
  6. カスケード反応で難関天然物をまとめて攻略!
  7. OPRD誌を日本プロセス化学会がジャック?
  8. 無保護糖を原料とするシアル酸誘導体の触媒的合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 研究者向けプロフィールサービス徹底比較!
  2. 中性ケイ素触媒でヒドロシリル化
  3. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  4. アルカリ金属でメトキシアレーンを求核的にアミノ化する
  5. カリフォルニア大学バークレー校・化学科への学部交換留学
  6. ナノテクノロジー関連の特許が多すぎる問題
  7. チャップマン転位 Chapman Rearrangement
  8. エタール反応 Etard Reaction
  9. 史 不斉エポキシ化 Shi Asymmetric Epoxidation
  10. 細胞をすりつぶすと失われるもの

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

(–)-Daphenezomine AとBの全合成

ユズリハアルカロイドである(–)-Daphenezomine AとBの初の全合成が達成された。複雑な…

機能性ナノマテリアル シクロデキストリンの科学ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

粒子画像モニタリングシステム EasyViewerをデモしてみた

スラリー中の粒子(結晶)の観察は、晶析研究などではぜひみたいところです。しかし、外に取り出し…

化学者のためのエレクトロニクス講座~次世代配線技術編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

三井化学岩国大竹工場の設備が未来技術遺産に登録

三井化学はこのほど、岩国大竹工場(山口県和木町)にあるポリエチレン製造装置が、国立科学博物館により、…

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を…

gem-ジフルオロアルケンの新奇合成法

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ…

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

Chem-Station Twitter

PAGE TOP