[スポンサーリンク]

化学者のつぶやき

芳香族求核置換反応で18Fを導入する

[スポンサーリンク]

~SNArの知られざる一面~

芳香族求核置換反応は、芳香環上の脱離基が求核剤によって置換される反応であり、古くから汎用される信頼性の高い有機反応の1つです。いくつか存在する反応機構の中で代表的な付加−脱離(SNAr)機構は、

  1. 求核剤と芳香環の結合形成段階
  2. 脱離基と芳香環の結合開裂段階

の2つの遷移状態を有します。最近、ドイツマックスプランク研究所のRitter教授らは、独自に開発した脱酸素的フッ素化剤PhenoFluorを用いた芳香族フッ素化反応が、1つの遷移状態を経由する協奏的付加−脱離(CSNAr)機構で進行することを明らかにしました。また、本反応の特長を活かして従来法では困難な18Fの導入も達成し、PETイメージング技術の発展に大きく貢献しました。論文は以下。

 

Concerted nucleophilic aromatic substitution with 19F and 18F

Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534, 369. DOI: 10.1038/nature17667

 

今回はこの論文について簡単に紹介したいと思います。

 

SNAr機構とCSNAr機構

一般的に芳香族求核置換反応は、ニトロ基のような電子求引性基によって活性化された芳香環の場合において、SNAr機構で進行しやすいことが知られています。SNAr機構は「求核種の付加段階」と「脱離基の解離段階」の2つの遷移状態を有しており、両者の間には芳香環にアニオンが非局在化したMeisenheimer錯体と呼ばれる反応中間体が存在します。

一方で、遷移状態が1つのCSNAr機構も存在する[1]。CSNAr機構では求核種の付加と脱離基の解離が協奏的に進行し、電子求引性置換基の有無に関わらず求核置換が進行します(図 1, a)。例えば、O-チオカーバメートが高温下においてS-チオカーバメートへと転位するNewman-Kwart転位反応[2]は、CSNAr機構で進行することが知られており、実際電子求引性基をもたない芳香環も本反応に適用可能です(図 1, b)。

 

2016-08-15_04-17-52

図1. (a) SNAr反応とCSNAR反応の活性化エネルギー (b) Neman-Kwart転位

 

PhenoFluor

2011年Ritter教授らによって開発されたPhenoFluor[3]は、種々のフェノール誘導体を1段階でフルオロアレーンへと変換するフッ素化剤として知られています。

PhenoFluorを使ったフッ素化は官能基許容性に優れており、水酸基部位を特異的にフッ素化することが可能です。また、フェノール以外にも脂肪族アルコールも適用可能であり、合成終盤でのフッ素化も実現されています[4]

 

2016-08-15_04-18-13

図2 PhenoFluorを使った脱酸素的フッ素化反応

反応機構

Ritter教授らはPhenoFluorによるフッ素化反応について図 3に示す反応機構を想定しています。

最初にフェノールとの反応によりウロニウムイオン1が形成し、CsFの添加によってイミダゾリウム種へフッ素原子が付加した四面体中間体2を生成します。この四面体中間体2から、協奏的なC–O結合の切断とC–F結合の形成を伴う遷移状態TSを経て目的のフルオロアレーンとウレア3が得られる機構です。

 

2016-08-15_04-20-33

図3. 推定反応機構

 

本論文において彼らは遷移状態理論モデルに基づいたDFT計算、およびHammet Plot、16O/18Oの速度論的同位体効果、Eyring Plot、種々の対照実験を行い、本反応の詳細な機構を調べました。要点を以下にまとめます。

 

  • 四面体中間体2と生成物間の遷移状態TS(活性化障壁が最大)は1つであり、TSは分子内4員環構造になる。
  • SNAr機構と同様の傾向として電子求引性置換基による反応速度の増大が観測されたが、その影響はSNArの場合と比較して非常に小さい(Hammet Plotの傾きr)。
  • C–O結合の切断は律速段階に含まれる(16O/18Oの速度論的同位体効果)。
  • フッ素化がイプソ置換で進行するため、ラジカル機構やベンザイン機構は該当しない。
  • 反応進行にはCsFの添加が必須である。CsFはウロニウムイオン1のカウンターアニオンHF2からHFを取り除く働きをしており、生じたFがイミダゾリウム種へと求核攻撃することで四面体中間体2が生じる。最終的に導入されるF原子は四面体中間体2の分子内F原子である。

 

これらの結果から、本反応が協奏的なC–O結合の切断とC–F結合の形成を伴うCSNAr機構で進行することが明らかになりました。中性分子ウレア3の脱離が発エルゴン的であることから、協奏的な求核置換反応の実現には優秀な脱離基の選択が必須であると考えています。

 

簡便な18F導入法への応用

18Fは陽電子放出によるb崩壊を引き起こすため、ポジトロン断層法(PET)の放射性トレーサーとして非常に重要な同位体です。その半減期も他の同位体元素と比較して110分と長いことが特長であり、医薬品製造段階から医療現場への迅速供給が可能です。今回Ritter教授らは本反応の応用展開としてフェノール誘導体への18F導入法を開発し、従来法では合成困難な様々な芳香環への18F導入に成功しました。

2016-09-06_11-12-32

 

参考文献

  1. Williams, A. et al. J. Chem. Soc. Perkin Trans. 1993, 2, 1703. DOI: 10.1039/P29930001703
  2. Lloyd-Jones, G. C. et al. Synthesis 2008, 5, 661. DOI: 10.1055/s-1973-22279
  3. Ritter, T. et al. J. Am. Chem. Soc. 2011, 133, 11482. DOI: 10.1021/ja2048072
  4. Ritter, T. et al. J. Am. Chem. Soc. 2013, 135, 2470. DOI: 10.1021/ja3125405
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 保護基の使用を最小限に抑えたペプチド伸長反応の開発
  2. 有機アジド(1):歴史と基本的な性質
  3. フラーレン〜ケージを拡張、時々、内包〜
  4. Excelでできる材料開発のためのデータ解析[超入門]-統計の基…
  5. ヒドラジン
  6. 円偏光スピンLEDの創製
  7. アズレンの蒼い旅路
  8. オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC…

注目情報

ピックアップ記事

  1. 【書籍】理系のための口頭発表術
  2. 工業生産モデルとなるフロー光オン・デマンド合成システムの開発に成功!:クロロホルムを”C1原料”として化学品を連続合成
  3. 【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ
  4. アメリカ大学院留学:研究者キャリアとライフイベント
  5. 酸化反応を駆使した(-)-deoxoapodineの世界最短合成
  6. ゲルマニウム触媒でアルキンからベンゼンをつくる
  7. 原子3個分の直径しかない極細ナノワイヤーの精密多量合成
  8. 科学とは「未知への挑戦」–2019年度ロレアル-ユネスコ女性科学者日本奨励賞
  9. Spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2)
  10. フローシステムでペプチド合成を超高速化・自動化

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP