[スポンサーリンク]

ケムステニュース

分析化学の約50年来の難問を解決、実用的な微量分析法を実現

[スポンサーリンク]

東京大学大学院理学系研究科の合田圭介教授が率いる研究グループは、極めて高い再現性、感度、均一性、生体適合性、耐久性を持つ表面増強ラマン分光法(Surface-Enhanced Raman Spectroscopy: SERS)の基板を開発し、化学(特に微量分析)における50年来の難問を解決しました。 (引用:産総研プレスリリース9月24日)

ラマン分光法は化学結合と物質の同定や結晶格子の歪み評価、結晶性の評価に活用されていますが、感度が低いという欠点があります。この欠点を克服する表面増強ラマン分光SERS)が1970年代に発見されました。SERSは、対象分子が金、銀、アルミなどのプラズモン共鳴を強く示すナノ粒子に吸着して、対象分子から発せられたラマン光が局在表面プラズモン共鳴(LSPR)によって強度が向上する現象を利用した測定のことで、現在では、SERS用の基板が市販されています。

市販されているSERS基板、中心の金のナノ構造によってラマン散乱光が増幅される。(出典:浜松ホトニクス

しかしながら、SERSの感度は、金属ナノ粒子の集合体や人工金属ナノ構造に依存するため再現性が低いという問題があります。また、金属基板を使うため酸化されやすく、光を照射することで熱を発生させてしまうため、生体分子の応用は困難でした。近年では、LSPRではなく構造共鳴や電荷移動共鳴を利用するシリコンやゲルマニウムナノ構造体、二次元材料、半導電性金属酸化物などの非金属材料が提案され、金属由来の問題は解消されましたが、光触媒効果や物質の毒性の効果もあり再現性の向上には至っていないのが現状です。そんな中、本論文の筆者らは、多孔質炭素ナノワイヤをアレイ状に配列したナノ構造体(Porous Carbon Nanowire Array:PCNA)のSERS基板を開発しました。

まず、基板の合成方法ですが、ナノワイヤを成長させるために陽極酸化アルミナをテンプレートとしてピロールモノマーの電解重合を行いました。次にこのピロールモノマーにDMSO+硫黄を加えて電圧をかけて電気的劣化を起こし、ポーラス構造を作りました。最後に塩基によるアルミナテンプレートの除去と高温処理による炭化を行いPCNA基板を完成させました。

a:PCNAの合成方法 b:炭化前後のラマンスペクトル c:炭化前後のI-V測定結果 d:炭化前後のEDSスペクトル(出典:原著論文

このPCNA基板を使って、ローダミン6Gのラマン分光を測定し、高い感度と再現性があるかどうかを調べました。その結果、参照基板である、シリコン基板、PNA基板、CNA基板よりも高い感度でPCNA基板は測定することができました。また、別々に合成した20枚のPCNA基板で測定してもラマンピークの相対強度差は±10%の範囲に収まり、高い再現性があることが分かりました。

a:基板別のローダミン6Gのスペクトル b:ローダミン6Gの濃度を変えた時のスペクトル c:各波長の濃度別散乱強度の比較 d:PCNA基板のロット違いによる各波長の濃度別散乱強度の比較(出典:原著論文

次に生体分子の感度を確認するためにβ-ラクトグロブリン粉末を測定しました。するとPCNA基板を使うとシリコンや市販の金属基板よりも高い感度で測定でき、感度を計算すると106の感度増強されています。測定場所の違いによる散乱強度も測定され、変動幅が9%以内と均一性が確認されました。グルコースの水溶液でもスペクトル測定が確認され、その上時間が経っても測定できることが分かりました。金属基板の場合は、1時間以上空気中においておくと酸化させれて使用できなくなるので、この開発により応用が広がると考えられます。

a: β-ラクトグロブリンの基板別のスペクトル b: β-ラクトグロブリンをPCNA基板上で測定した時の測定場所による散乱強度の違い c:bの散乱強度をヒストグラムとしてまとめた結果 d:グルコース水溶液の基板別のスペクトル e:基板を一定時間置いた後の測定結果(出典:原著論文

最後にこの現象について理論的な検証を行いました。それによるとPCNA基板でラマン散乱光が増強されるのは、1、炭素が高い電荷移動効率をもたらしている。2、残留H,N,S原子が分子と基板の電荷移動を促進している。3、ポーラス構造から成る特異的な電場分布であると推測しています。

a:ローダミン6GとPCNA基板の表面を考えた時のエネルギーダイアグラム b: :ローダミン6GのシリコンとPCNA上のラマンスペクトル c:ポーラス構造あるなしによる電場の違い(出典:原著論文

結果として、106程度の感度増強が確認され、また再現性、均一性、生体適合性、耐久性といった金属基板に無い特性もいくつか見いだされていることから、低濃度での生体分子のラマン分光法への実用には十分だと結論付けられています。今後、基板の組成や構造の最適化、このPCNA基板に最適な励起レーザーの探索、電荷移動共鳴の解明を行い、より高いSERSの感度増強を得る研究を続けるそうです。このPCNA基板を用いたSERSには様々な場面での応用が考えられ、例えば、血中グルコースの測定、感染症の抗原抗体反応測定、がん代謝プロファイリング解析、リアルタイム細菌検出などが可能にされています。

生体分子の微量分析への展開が期待されているということで、特に科学捜査や環境研究にて応用が広がるのではないかと思います。科学捜査においては、DNAサンプルを現場に残された痕跡から採取し、犯人の探索を行いますが、捜査機関のデータベースに登録されていないDNAであれば、なんの手掛かりにもなりません。一方で犯人が残した凶器や靴、衣類の型番から購入した店を特定して犯人を絞り込むことをよく行いますが、この技術を使えば、残された生体分子の化学的情報から犯人特定の手掛かりを得ることができ、犯人の範囲を絞る情報が増えるのではないかと思います。そのうえでウィスキーの判別でもあったように、混合物のラマンスペクトルをそれぞれの目的にあった有用な情報に変換することで、混合物の解析が難しいラマンといった分光測定も機械学習といったアプローチによりさらに応用が広がる可能性があると思います。その中で、この研究のような測定できる対象の拡大とその感度の向上は重要になると考えられます。

関連書籍

関連リンクとラマン分光に関連するケムステ過去記事

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. コケに注目!:薬や香料や食品としても
  2. 高校生の「化学五輪」、2010年は日本で開催
  3. 日本化学会第85回春季年会
  4. 化学大手2014年4–9月期決算:概して増収増益
  5. 定番フィルム「ベルビア100」が米国で販売中止。含まれている化学…
  6. いつ、どこで体内に 放射性物質に深まる謎
  7. 第54回国際化学オリンピックが開催、アジア勢が金メダルを独占
  8. 中外製薬、抗悪性腫瘍剤「エルロチニブ塩酸塩」の製造販売承認を申請…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑮:4Kモニターの巻
  2. 【21卒イベント 大阪開催2/26(水)】 「化学業界 企業合同説明会」
  3. 春の褒章2011-化学
  4. 求核的フルオロアルキル化 Nucleophilic Fluoroalkylation
  5. 第156回―「異種金属―有機構造体の創製」Stéphane Baudron教授
  6. ポール・ウェンダー Paul A. Wender
  7. リチウムイオン電池製造の勘どころ【終了】
  8. ガッターマン・コッホ反応 Gattermann-Koch Reaction
  9. ピーター・リードレイ Peter Leadlay
  10. “かぼちゃ分子”内で分子内Diels–Alder反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

無機物のハロゲンと有機物を組み合わせて触媒を創り出すことに成功

第449回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(椴山グループ)5年…

熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-

第448回のスポットライトリサーチは、東京工業大学 工学院 機械系 機械コース 村上陽一研究室の長 …

毎年恒例のマニアックなスケジュール帳:元素手帳2023

hodaです。去年もケムステで紹介されていた元素手帳2022ですが、2023年バージョンも発…

二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を制御する化学遺伝学センサーの開発 ―

第447回のスポットライトリサーチは、東京大学大学院 理学系研究科化学専攻 生体分子化学研究室(キャ…

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第446回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP