[スポンサーリンク]

スポットライトリサーチ

電流励起による“選択的”三重項励起状態の生成!

[スポンサーリンク]

ついに第200回となりました。記念すべき200人目のスポットライトリサーチは、理化学研究所Kim表面界面科学研究室で博士後期課程の学生として活躍されている木村 謙介(きむら けんすけ)さんにお願いしました!

金研究室は、徹底的に磨き上げた走査トンネル顕微鏡(Scanning Tunneling Microscope: STM)装置を構築し、世界最高の精度のデータを武器に極めて精力的に研究を展開されています(参考文献:Imada et al., Nature 538, 364–367 (2016)Kazuma et al., Science 360, 521-526 (2018), など。最近ケムステでもスポットサイトリサーチで三輪さんの成果を紹介させていただきました)。表面に置かれた単分子の物性、という挑戦的な分野を実験と理論の両面から開拓されており、今回はなんと電流励起による選択的電子励起状態の生成の成果を紹介いただけます。

STMは原子レベルで鋭い金属探針を使って空間分解能よく電圧を印加し、探針の位置をスキャンしながら電流を記録して、究極の空間分解能で表面観察を達成する手法です。今回紹介いただける成果は、表面に置かれたたった一つの分子に選択的に電圧をかけるという特徴を活かして、電流によって励起された分子がどのように振舞うかを詳細に調べることで得られた素晴らしい成果です。分子を電子励起する際に、光で励起すると励起初期は一重項励起状態のみ、有機発光ダイオード(OLED)のように電流で励起すると一重項励起状態と三重項励起状態が1:3で生成するというのが業界では常識だったのですが、今回はなんと印加する電圧を制御することで三重項励起状態を選択的に生成することができたいう、化学的にも物理的にも驚きの成果です。独創性、重要性が高く評価された本成果はNature本に掲載されており、理化学研究所からもプレスリリースされています。

“Selective triplet exciton formation in a single molecule”
Kensuke Kimura, Kuniyuki Miwa, Hiroshi Imada, Miyabi Imai-Imada, Shota Kawahara, Jun Takeya, Maki Kawai, Michael Galperin & Yousoo Kim
Nature 2019, 570, 210–213. DOI: 10.1038/s41586-019-1284-2.

金先生からは、木村さんと本研究成果について以下のようにコメントをいただきました。

木村君は、根気強く一歩ずつ研究を進めていくタイプの学生です。今回発表した論文は木村君が修士1年の頃から取り組んでいる内容で、研究の中で見つけた偶然の発見を見逃さず掬い取り、見事に概念化してくれました。研究室の日常においても木村君の人柄はとてもフレンドリーで優しく楽しい性格で、常時行われている共同作業の中で周りの同僚を安定感よく支えてくれています。今後も新たな目標に向かって着実に研究を進めてくれると期待しており、一緒に新たな科学を切り拓いていけることを楽しんでいきたいと思います。

それでは、木村さんからの情熱あふれるメッセージをどうぞ! 論文の形にまとめるまでのドラマを思う存分に書いていただきました!

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?

「帯電した分子を準備して詳細な発光&伝導測定をすることで、“りん光”が選択的に起こる新しい現象を発見しました!」という研究です。我々、Kim表面界面科学研究室では走査トンネル顕微鏡(STM)を駆使した単一分子科学を行っています。特に、STMの探針から流れるトンネル電流を基板上に吸着させた分子に流して励起状態を作り、分子から生じる発光を検出する技術を磨いてきました(図1a)。単一分子をサブナノメートルの空間分解能で「観て」、そこからの微弱な光を「測る」ことができるとてもユニークな手法です(図1b, c)。

今回の研究は、PTCDAという分子を対象に単一分子発光実験を行い、蛍光(一重項励起状態(S1状態)からの発光)とりん光(三重項励起状態(T1状態)からの発光)を観測しました。そして面白いことに、低電圧ではりん光のみが生じるという新しい現象を観測しました(図1d)。

なぜ、このような現象が起こったかというと、PTCDAが基板に吸着して負に帯電していたことが鍵となっていました。負に帯電している、つまり分子のLUMOに1個余分な電子があるのですが、この余剰電子のスピンに対して逆向きスピンのHOMOの電子がエネルギー的に不安定で先に抜けるため、T1状態が選択的に形成されたと結論付けました(図1e)

図1. STM単一分子発光測定の概要とT1状態の選択的形成の観測

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

OLEDでは電流を流すとS1状態とT1状態が1:3の割合で形成されます。この1:3法則はOLED研究において、Baldoらが1998年にりん光OLEDを報告して以来、最も基本的で重要な研究指針でした。今回の研究では、T1状態が選択的に出来ていて明らかに1:3法則を壊しているところに面白さを感じ、OLEDという応用面においても重要な研究結果かもしれないと思ったからこそ、多くのコミュニティの研究者の目に触れるように専門誌でなく一般誌への投稿に強いこだわりを持ち、研究に取り組んできました。学部生の頃から慣れ親しんできたChem-Stationに取り上げて頂けたことも、色々な方に研究を知って頂ける良いきっかけになり、本当に嬉しく思っています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

論文には「T1状態を選択的に形成するために、分子の帯電状態を利用した」と自信満々に書いていますが、正直なところ最初は実験データを全く解釈できていませんでした。当初はPTCDAの蛍光(505 nm)を観測しようと思って始めた実験なのですが、なぜか933 nmに分子発光が現れました(実は、この論文はPTCDAのりん光を初めて観測した論文でもあり、最初はりん光とアサイン出来ていませんでした)。また、「低電圧でりん光が選択的に起こる」=「高い電圧をかけないと蛍光が見えない」ことを意味しています。つまり、長い間「933 nmのよく分からん発光が、2.1 Vというよく分からん電圧から起こり始める」という状況が続いていました

この謎だらけの状況が1つに繋がったのは、主に2つの出来事があったからです。1つはカナダのSTMグループにより、ほぼ同じ系のSTM実験(STM発光ではない)がなされ(注1)、PTCDAが基板上で負に帯電していることが報告されたことです。これが謎を解く大きな手掛かりになりました。もう1つは、単一分子発光の理論構築に関して毎日のようにディスカッションをしていた中で、“分子内の電子間に働く相互作用”によって図1eのようなスピン選択的な伝導が起きているのでは、と気づけたことです。「この考え方が正しければ、2.1 Vから更に1.2 Vくらい(りん光と蛍光のエネルギー差に対応)かければ蛍光が起こるのではないか!?」と仮説を立て実験を行いました。といっても単一分子のSTM実験を3.3 Vで行うことは至難の業で、良い探針(注2)が出来るまで粘り強く実験に取り組みました。2016年10月26日、初めてPTCDAからの蛍光シグナルが見えた瞬間、一緒に実験していた今田さん(Kim研の研究員)と熱いハイタッチ&固い握手をしたことは今でも鮮明な記憶です。

(注1) K. A. Cochrane et al., Nat. Commun. 6, 8312 (2015). 大きな手掛かりをくれた論文ではありますが、見つけた時は驚いたと共に、多少ショックを受けたのを覚えています。Burke先生は、秋に参加予定の学会で招待講演をされるみたいなので、楽しみにしています。

(注2) STMで綺麗な像が取れる、強い発光が得られるかは全て探針次第です。原子レベルで良い先端を有する探針をどう作るかというと、綺麗な金属基板に探針を少し接触させて先端の偶然の変化に身を委ねるか、探針と基板間に一瞬高い電圧パルスをかけて探針先端の偶然の変化に身を委ねるかの2択です。つまり、“偶然の変化”に身を委ねるしかなく、良い探針を求めて数日間ひたすら探針調整することもよくあります。今回の実験では、3.3 Vという高い電圧でも分子を壊したり基板から脱離させたりせず安定して測定ができる探針が必要で、PTCDAからの蛍光を絶対に捉えるという信念と「10001回目は 何か 変わるかもしれない」(何度でも, DREAMS COME TRUE, 2005)という希望のもと探針調整をしました。

Q4. 将来は化学とどう関わっていきたいですか?

STM単一分子発光測定は極限的な計測手法です。そのような極限計測で得られた知見が、新たな化学になることにワクワクしています。今後も誰も出来ていない新たな手法を切り拓いていき、誰も見たことがない現象を鋭く切り取っていきたいなと思っています

Q5. 最後に、読者の皆さんにメッセージをお願いします。

Q3のエピソードは、かなり劇的なものだったと思っています。自分で仮説を立て、それが実験的に美しく実証できたとき、今まで分からなかったことが一気に繋がって心が震えました。今後どれだけこのような経験が出来るかは分かりませんが、このような驚きのある研究結果を出せるように頑張っていきたいと思っています。

ところで、読者の皆さんの中には、なぜ理化学研究所で研究しているのだろうと思って方がいるかもしれません。実は、理研は様々な大学から学生を受け入れる制度があり、博士課程の学生には理研内の学振DCのような制度「大学院生リサーチアソシエイト」などもあります。理研は、大学と違った雰囲気で研究を楽しめる環境だと思います。修士・博士課程の研究室を探している方で、もし気になる研究室があれば、Kim研に限らず先生方にコンタクトを取ってみてはいかがでしょうか。

最後になりますが、金先生、今田研究員、三輪研究員、今井研究員、川合先生、竹谷先生をはじめとした共著者の皆様の熱意と、研究室内外の皆様の支えがあって実を結んだ成果です。今後ともご指導ご鞭撻のほどよろしくお願い致します。

関連リンク

研究者の略歴

木村 謙介(きむら けんすけ)

所属:
理化学研究所 開拓研究本部 Kim表面界面科学研究室
東京大学大学院新領域創成科学研究科 物質系専攻 竹谷・岡本研究室

専門:
物理化学、表面科学、走査プローブ顕微鏡

略歴:
2010年3月 広島県立広島高等学校 卒業
2015年3月 東京大学工学部 応用化学科 卒業(川合・高木研究室)
2017年3月 東京大学大学院新領域創成科学研究科 物質系専攻 修士課程修了(川合・高木研究室)
2017年4月 東京大学大学院新領域創成科学研究科 物質系専攻 博士課程進学(竹谷・岡本研究室)
2017年4月 理化学研究所 大学院生リサーチアソシエイト
2018年4月 日本学術振興会 特別研究員DC2
※2014年から現在に至るまで、理化学研究所Kim表面界面科学研究室でSTM単一分子発光分光に従事

関連書籍等

分子系のSTM発光に関するレビュー論文:Chem. Rev., 2017, 117, 5174-5222, DOI:10.1021/acs.chemrev.6b00645

The following two tabs change content below.
ニューヨークでポスドクやってました。今は旧帝大JK。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 元素名と中国語
  2. 非天然アミノ酸合成に有用な不斉ロジウム触媒の反応機構解明
  3. エステルを使った新しいカップリング反応
  4. STAP細胞問題から見えた市民と科学者の乖離ー後編
  5. リガンド革命
  6. 研究室でDIY!~光反応装置をつくろう~
  7. 文具に凝るといふことを化学者もしてみむとてするなり⑧:ネオジム磁…
  8. 化学の学びと研究に役立つiPhone/iPad app 9選

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. チャン転位(Chan Rearrangement)
  2. プラサナ・デ・シルバ A Prasanna de Silva
  3. クロム光レドックス触媒を有機合成へ応用する
  4. 新しい量子化学 電子構造の理論入門
  5. 硫黄配位子に安定化されたカルボンの合成
  6. 化学で「透明人間」になれますか? 人類の夢をかなえる最新研究15
  7. アーウィン・ローズ Irwin A. Rose
  8. 第二回 伊丹健一郎教授ー合成化学はひとつである
  9. アンドレアス ファルツ Andreas Pfaltz
  10. 住友化・大日本住友薬、ファイザーと高血圧症薬で和解

関連商品

注目情報

注目情報

最新記事

ケミカルバイオロジーがもたらす創薬イノベーション ~ グローバルヘルスに貢献する天然物化学の新潮流 ~

お申込み・詳細はこちら開催日時2019年12月10日(火)13:00~17:30(開場 …

微小な前立腺がんを迅速・高感度に蛍光検出する

第231回のスポットライトリサーチは、河谷稔さんにお願い致しました。河谷さんが研究を実施され…

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

Chem-Station Twitter

PAGE TOP