[スポンサーリンク]

化学者のつぶやき

メソポーラスシリカ(2)

[スポンサーリンク]

前回:メソポーラスシリカ(1)からの続きです。

前回ご紹介したFSM-16は、カネマイトの層状構造が規則的に折れ曲がることにより多孔質構造を生成(記事の最後を御覧ください)していました。今回は異なる生成機構を経る、そして今日のメソポーラス材料(mesoporous materials)に携わる研究者にとって最も有名なMCM-41について書きたいと思います。

トップの図は2Dヘキサゴナル構造のTEM画像(Kapoor, M. P.; Inagaki, S. Bull. Chem. Soc. Jpn. 2006, 79, 1463.より)

界面活性剤の自己集積(self-assembly)

MCMの紹介の前に、界面活性剤(surfactant)についてざっと確認しておきます。

界面活性剤とはッ!

「…ただの洗剤だろう。」

と揶揄されることも多々、多々、多々、多々ありますが…その本質は親水性と親油性、二つの異なる性質の部分をもつことから、溶液中でその濃度に応じた形状のミセル(micelle)を生成することにあります。この時、ミセルを形成するために必要な濃度(ミセルを形成できる最も低い濃度)のことを臨界ミセル濃度(Critical Micelle Concentration)と呼びます。

ミセルの形状は、
球状ミセル(spherical micelle)
棒状ミセル(rod-like micelle)
ラメラ状ミセル(lamellar micelle)
などがあり、微妙な条件変化(界面活性剤、溶媒、温度、pH、系中に存在するその他全ての物質)に影響されるため、自分の欲しい形状の(テンプレート※後述)ミセルをバシっと用意するのはなかなか骨の折れる作業です。(まぁ具体的な操作はひたすら洗剤を溶かすだけですけど。)


界面活性剤のミセル形状

メソポーラスシリカの合成(2) MCM-41

界面活性剤のおさらいをしたところで、やっと今回の主役の登場です。
1992年、米Mobil社のKresgeらによって報告されたMCM-41(Mobil Crystalline Material)は上述の界面活性剤の特徴を上手く活用したもので、アルキルトリメチルアンモニウム塩の棒状ミセルをStructure Directing Agent(構造の雛形、テンプレート)として利用し、ミセルの周囲でケイ酸塩もしくはSi(OMe)などを縮合(condensation)させた後、FSMと同様の焼成(calcination)処理をすることで界面活性剤を除去しメソポーラス構造体を得ました[1]。界面活性剤のアルキル鎖の長さを変えることでメソ孔の径を調節できることから、欲しいサイズの孔を持つオーダーメイド・メソポーラスシリカの合成が現実のものとなりつつあります。
(他にもメシチレンの添加によってミセルを膨らませる、というテクニック[2]もあります。
また、2Dヘキサゴナル構造の生成機構に関して、シリカ源を加える前に既に界面活性剤の棒状ミセルにより2Dヘキサゴナルの液晶相ができていて、それをテンプレートとしているのだという説(下図①)があるものの、実際には液晶相には至らない低濃度のミセル溶液からも2Dヘキサゴナル構造を持つ生成物が得られることから、ミセル表面でのシリカ源の縮合と棒状ミセルの配列が協奏的に起こっているとする説(下図②)が広く支持されています。)


Structure Directing Agentによる規則的構造の生成メカニズム
(関連文献[2]より)
 MCMが後のメソポーラス材料の研究に与えた影響は、そのネーミングセンス(※)と、何と言ってもミセルを用いたその多孔質構造の生成機構(Surfactant Templating Method(界面活性剤会合体鋳型法、というお念仏のような日本語記述を一度だけ目にしたことがあります…))の開発でしょう。例えば次のような化合物を目にして、みなさんは何を思い浮かべますか?


何を思ふ
続きます 。

※後発のメソポーラスシリカで特に有名なものに、SBA-15というものがあります。このSBAの由来はもはや生成機構でもMaterialでもなんでもなく、ただの地名だったりします。カリフォルニア州立大学サンタバーバラ校のStuckyらにより報告されたもので…お察し下さい。[3]

 

後日加筆 FSM-16のメソポーラス構造の生成機構について

その後の研究で、FSM-16の生成機構は「シートの折れ曲がり」ではなく、「一度融解したカネマイト由来のケイ酸が縮合する」MCMと同様の生成機構を経ていることが報告されています[4]。しかしながら、同様にカネマイトをシリカソースとする場合でも酸性条件下ではカネマイトのケイ酸層は保持され、かつ正方形のメソポーラス構造を持つ、KSW-2というマテリアルも報告されています[5]
また、カネマイトから合成した“MCM-41様”メソポーラスシリカMCM-41よりも熱的安定性に優れているという報告もあり、たとえ塩基性条件下でもカネマイトは完全に融解するわけではなく、したがって結晶構造も部分的に保たれているようです[6]
いずれにせよ、当初報告されていたFolded Sheet機構は否定されているということで、筆者の浅学ゆえに古い情報をそのままお伝えしてしまいました。申し訳ありません。

コメントでご指摘してくださったXSさん、どうもありがとうございました。また、この加筆をするに当たりインターネットで偶然発見し読ませていただいた島津省吾先生(千葉大学工学部)の授業用資料(?)でも改めて勉強させていただきました。(直接リンクは貼らずに「見つけた時の画面」だけ貼っておきます。)

 

関連文献

  1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710. DOI: 10.1038/359710a0
  2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. J. Am. Chem. Soc., 1992, 114, 10834. DOI: 10.1021/ja00053a020
  3. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature, 1994, 368, 317. DOI:10.1038/368317a0
  4. Sakamoto, Y.; Inagaki, S.; Ohsuna, T.; Ohnishi, N.; Fukushima, Y.; Nozue, Y.; Terasaki, O. Microporous and Mesoporous Mater. 1998, 21, 589. DOI: 10.1016/S1387-1811(98)00053-5
  5. Kimura, T.; Kamata, T.; Fuziwara, M.; Takano, Y.; Kaneda, M.; Sakamoto, Y.; Terasaki, O.; Sugahara, Y.; Kuroda, K. Angew. Chem., Int. Ed. 2000, 39, 3855. DOI: 10.1002/1521-3773(20001103)39:21<3855::AID-ANIE3855>3.0.CO;2-M
  6. Chen, C. Y.; Xiao, S. Q.; Davis, M. E. Microporous Mater. 1995, 4, 1.DOI: 10.1016/0927-6513(94)00077-9

Avatar photo

せきとも

投稿者の記事一覧

他人のお金で海外旅行もとい留学を重ね、現在カナダの某五大湖畔で院生。かつては専ら有機化学がテーマであったが、現在は有機無機ハイブリッドのシリカ材料を扱いつつ、高分子化学に

関連記事

  1. 有機合成化学協会誌2020年7月号:APEX反応・テトラアザ[8…
  2. 有機化学系ラボで役に立つ定番グッズ?100均から簡単DIYまで
  3. スルホンアミドからスルホンアミドを合成する
  4. タンパク質の定量法―ビューレット法 Protein Quanti…
  5. 学部生にオススメ:「CSJ カレントレビュー」で最新研究をチェッ…
  6. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級…
  7. 第二回ケムステVシンポ「光化学へようこそ!」開催報告
  8. ヒドラジン合成のはなし ~最新の研究動向~

注目情報

ピックアップ記事

  1. チャンパック・チャッタージー Champak Chatterjee
  2. 原田 明 Akira Harada
  3. ネバー転位 Neber Rearrangement
  4. 【追悼企画】カナダのライジングスター逝く
  5. チャールズ・リーバー Charles M. Lieber
  6. 徹底比較 特許と論文の違い ~明細書、審査編~
  7. アニリン類のC–N結合に不斉炭素を挿入する
  8. 国際化学オリンピックのお手伝いをしよう!
  9. 特許庁「グリーン早期審査・早期審理」の試行開始
  10. 第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP