[スポンサーリンク]

化学者のつぶやき

メソポーラスシリカ(2)

前回:メソポーラスシリカ(1)からの続きです。

前回ご紹介したFSM-16は、カネマイトの層状構造が規則的に折れ曲がることにより多孔質構造を生成(記事の最後を御覧ください)していました。今回は異なる生成機構を経る、そして今日のメソポーラス材料(mesoporous materials)に携わる研究者にとって最も有名なMCM-41について書きたいと思います。

トップの図は2Dヘキサゴナル構造のTEM画像(Kapoor, M. P.; Inagaki, S. Bull. Chem. Soc. Jpn. 2006, 79, 1463.より)

界面活性剤の自己集積(self-assembly)

MCMの紹介の前に、界面活性剤(surfactant)についてざっと確認しておきます。

界面活性剤とはッ!

「…ただの洗剤だろう。」

と揶揄されることも多々、多々、多々、多々ありますが…その本質は親水性と親油性、二つの異なる性質の部分をもつことから、溶液中でその濃度に応じた形状のミセル(micelle)を生成することにあります。この時、ミセルを形成するために必要な濃度(ミセルを形成できる最も低い濃度)のことを臨界ミセル濃度(Critical Micelle Concentration)と呼びます。

ミセルの形状は、
球状ミセル(spherical micelle)
棒状ミセル(rod-like micelle)
ラメラ状ミセル(lamellar micelle)
などがあり、微妙な条件変化(界面活性剤、溶媒、温度、pH、系中に存在するその他全ての物質)に影響されるため、自分の欲しい形状の(テンプレート※後述)ミセルをバシっと用意するのはなかなか骨の折れる作業です。(まぁ具体的な操作はひたすら洗剤を溶かすだけですけど。)


界面活性剤のミセル形状

メソポーラスシリカの合成(2) MCM-41

界面活性剤のおさらいをしたところで、やっと今回の主役の登場です。
1992年、米Mobil社のKresgeらによって報告されたMCM-41(Mobil Crystalline Material)は上述の界面活性剤の特徴を上手く活用したもので、アルキルトリメチルアンモニウム塩の棒状ミセルをStructure Directing Agent(構造の雛形、テンプレート)として利用し、ミセルの周囲でケイ酸塩もしくはSi(OMe)などを縮合(condensation)させた後、FSMと同様の焼成(calcination)処理をすることで界面活性剤を除去しメソポーラス構造体を得ました[1]。界面活性剤のアルキル鎖の長さを変えることでメソ孔の径を調節できることから、欲しいサイズの孔を持つオーダーメイド・メソポーラスシリカの合成が現実のものとなりつつあります。
(他にもメシチレンの添加によってミセルを膨らませる、というテクニック[2]もあります。
また、2Dヘキサゴナル構造の生成機構に関して、シリカ源を加える前に既に界面活性剤の棒状ミセルにより2Dヘキサゴナルの液晶相ができていて、それをテンプレートとしているのだという説(下図①)があるものの、実際には液晶相には至らない低濃度のミセル溶液からも2Dヘキサゴナル構造を持つ生成物が得られることから、ミセル表面でのシリカ源の縮合と棒状ミセルの配列が協奏的に起こっているとする説(下図②)が広く支持されています。)


Structure Directing Agentによる規則的構造の生成メカニズム
(関連文献[2]より)
 MCMが後のメソポーラス材料の研究に与えた影響は、そのネーミングセンス(※)と、何と言ってもミセルを用いたその多孔質構造の生成機構(Surfactant Templating Method(界面活性剤会合体鋳型法、というお念仏のような日本語記述を一度だけ目にしたことがあります…))の開発でしょう。例えば次のような化合物を目にして、みなさんは何を思い浮かべますか?


何を思ふ
続きます 。

※後発のメソポーラスシリカで特に有名なものに、SBA-15というものがあります。このSBAの由来はもはや生成機構でもMaterialでもなんでもなく、ただの地名だったりします。カリフォルニア州立大学サンタバーバラ校のStuckyらにより報告されたもので…お察し下さい。[3]

 

後日加筆 FSM-16のメソポーラス構造の生成機構について

その後の研究で、FSM-16の生成機構は「シートの折れ曲がり」ではなく、「一度融解したカネマイト由来のケイ酸が縮合する」MCMと同様の生成機構を経ていることが報告されています[4]。しかしながら、同様にカネマイトをシリカソースとする場合でも酸性条件下ではカネマイトのケイ酸層は保持され、かつ正方形のメソポーラス構造を持つ、KSW-2というマテリアルも報告されています[5]
また、カネマイトから合成した“MCM-41様”メソポーラスシリカMCM-41よりも熱的安定性に優れているという報告もあり、たとえ塩基性条件下でもカネマイトは完全に融解するわけではなく、したがって結晶構造も部分的に保たれているようです[6]
いずれにせよ、当初報告されていたFolded Sheet機構は否定されているということで、筆者の浅学ゆえに古い情報をそのままお伝えしてしまいました。申し訳ありません。

コメントでご指摘してくださったXSさん、どうもありがとうございました。また、この加筆をするに当たりインターネットで偶然発見し読ませていただいた島津省吾先生(千葉大学工学部)の授業用資料(?)でも改めて勉強させていただきました。(直接リンクは貼らずに「見つけた時の画面」だけ貼っておきます。)

 

関連文献

  1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710. DOI: 10.1038/359710a0
  2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenkert, J. L. J. Am. Chem. Soc., 1992, 114, 10834. DOI: 10.1021/ja00053a020
  3. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature, 1994, 368, 317. DOI:10.1038/368317a0
  4. Sakamoto, Y.; Inagaki, S.; Ohsuna, T.; Ohnishi, N.; Fukushima, Y.; Nozue, Y.; Terasaki, O. Microporous and Mesoporous Mater. 1998, 21, 589. DOI: 10.1016/S1387-1811(98)00053-5
  5. Kimura, T.; Kamata, T.; Fuziwara, M.; Takano, Y.; Kaneda, M.; Sakamoto, Y.; Terasaki, O.; Sugahara, Y.; Kuroda, K. Angew. Chem., Int. Ed. 2000, 39, 3855. DOI: 10.1002/1521-3773(20001103)39:21<3855::AID-ANIE3855>3.0.CO;2-M
  6. Chen, C. Y.; Xiao, S. Q.; Davis, M. E. Microporous Mater. 1995, 4, 1.DOI: 10.1016/0927-6513(94)00077-9

The following two tabs change content below.
せきとも

せきとも

他人のお金で海外旅行もとい留学を重ね、現在カナダの某五大湖畔で院生。かつては専ら有機化学がテーマであったが、現在は有機無機ハイブリッドのシリカ材料を扱いつつ、高分子化学に

関連記事

  1. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用
  2. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  3. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)…
  4. ベンゼン環記法マニアックス
  5. 化学パズル・不斉窒素化合物
  6. 【読者特典】第92回日本化学会付設展示会を楽しもう!PartII…
  7. GRE Chemistry 受験報告 –試験対策編–
  8. クリーンなラジカル反応で官能基化する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. スケールアップ実験スピードアップ化と経済性計算【終了】
  2. 京都賞―受賞化学者一覧
  3. Dead Endを回避せよ!「全合成・極限からの一手」④
  4. 山口マクロラクトン化 Yamaguchi Macrolactonizaion
  5. ケムステ10年回顧録― 副代表版
  6. バニリン /Vanillin
  7. カガクをつなげるインターネット:サイエンスアゴラ2017
  8. 有機合成の進む道~先駆者たちのメッセージ~
  9. 持田製薬/エパデールのスイッチOTC承認へ
  10. 光触媒による水素生成効率が3%に

関連商品

注目情報

注目情報

最新記事

トーマス・レクタ Thomas Lectka

トーマス・レクタ (Thomas Lectka、19xx年xx月x日(デトロイト生)-)は、米国の有…

有機合成化学協会誌2017年12月号:四ヨウ化チタン・高機能金属ナノクラスター・ジシリルベンゼン・超分子タンパク質・マンノペプチマイシンアグリコン

2017年も残すところあとわずかですね。みなさまにとって2017年はどのような年でしたでしょうか。…

イミデートラジカルを経由するアルコールのβ位選択的C-Hアミノ化反応

オハイオ州立大学・David A. Nagibらは、脂肪族アルコールのラジカル関与型β位選択的C(s…

翻訳アルゴリズムで化学反応を予測、IBMの研究者が発表

有機化学を原子や分子ではなく、単語や文と考えることで、人工知能(AI)アルゴリズムを用いて化学反応を…

細胞をつなぐ秘密の輸送路

細胞から細く長く伸びるワイヤー状の管。サイトネームやトンネルナノチューブと呼ばれるこの管は、離れた細…

IGZO

インジウム (Indium) 、ガリウム (Gallium) 、亜鉛 (Zinc) 、酸素 (Oxy…

Chem-Station Twitter

PAGE TOP