[スポンサーリンク]

化学者のつぶやき

可視光光触媒でツルツルのベンゼン環をアミノ化する

[スポンサーリンク]

単純なアルキルアミンが利用できる芳香族C–Hアミノ化反応が開発された。基質適用範囲が広く天然物などの多官能性分子にも適用できる。

分子間芳香族C–Hアミノ化反応

医薬品、農薬などに頻出する含窒素芳香族化合物の合成において、事前の官能基化を必要としない分子間芳香族C–Hアミノ化反応は強力な手法となる。しかし、利用可能な芳香族化合物や窒素源は未だ制限が多い。
これまでに報告されている分子間芳香族C–Hアミノ化反応は、配向基を利用するものが数多く知られている[1]
一方、配向基をもたないベンゼン環のC–Hアミノ化にはナイトレンが利用できるが、大過剰の基質を必要とする[1]。近年になって、化学量論量のベンゼン類を用いる芳香族C–Hアミノ化反応が報告された(図1A)[3]。しかし、これらの反応に利用可能な窒素源はイミド[3a-3d]、ヒドロキシルアミン誘導体[3e,3f]、アゾール[3g-3i]、Selectfluor®︎[3j]などに限られていた。
この課題に対しNicewiczらは、強力な酸化力をもつ福住触媒Me2-Mes-Acr+を用いて、一級アミンが利用できる電子豊富なベンゼン環のC–Hアミノ化反応を実現した。一方で、本論文の著者であるLeonori らは以前にフェノキシアミンを用いた芳香族C–Hアミノ化反応を報告している(図1C)[5]。本反応は二当量のアレーンと特殊なアミンが必要となるが、ベンゼン環をはじめとする様々な芳香族化合物にアルキルアミンを導入することができる。
今回、同著者らはNCSと光触媒を用いることにより、単純なアルキルアミンが利用可能な芳香族C–Hアミノ化を開発した(図1D)。本反応で特筆すべきはその官能基許容性であり、ハロゲン、ホウ素及びケイ素官能基をもつ基質でも問題なくアミノ化が進行する。さらに本反応をフロー系に適用することで一部のアニリン誘導体をグラムスケールで合成出来ることも示した。

図1. (A) (B) (C) 従来の芳香族C–Hアミノ化反応 (D) 本論文の反応

 

Practical and regioselective amination of arenes using alkyl amines
Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Nat. Chem. 2019, 11, 426.
DOI: 10.1038/s41557-019-0254-5

論文著者の紹介

研究者:Daniele Leonori
研究者の経歴:2007–2010 PhD University of Sheffield (Prof. Iain Coldham)
2010–2011 Postdoctral Research Associate, RWTH-Aachen University (Prof. Magnus Rueping)
2011–2012 Postdoctral Research Associate, Max Planck institute for Colloids and interfaces (Prof. Peter H. Seeberger)
2012–2014 Research Officer, University of Bristol (Prof. Varinder K. Aggarwal FRS)
2014–2018 Lecturer of Organic Chemistry, University of Manchester
研究内容:窒素ラジカルを介したC–N結合形成反応の開発

論文の概要

本反応における反応機構を以下に示す(図2A)。単純なアミンAに対しNCSを作用させN-クロロアミンBを発生させる。続いて、ブレンステッド酸を加えて生じるN-クロロアンモニウムCが一電子還元されアミニウムラジカルEとなる。Eは芳香族化合物へ付加しFを与え、続く一電子酸化と脱プロトン化によりアニリン誘導体Hが得られる。しかし、N-クロロアンモニウムCは芳香族を求電子的に塩素化しDを生成することが知られている[5]。芳香族アミノ化を実現させるためにはCのもつ通常の反応性を回避する必要があった。これらの課題に対し筆者らは光触媒としてRu(bpy)3Cl2を、ブレンステッド酸としてHClOを用いることで、求電子的塩素化を起こすことなくC–Hアミノ化を達成した。

本反応の基質適用範囲は広く、芳香環上にハロゲン(3a,3b)、シリル基(3c)、ボリル基(3d)が存在する場合も問題なく反応が進行する(図2B)。また、一級アミンを窒素源として用いることも可能である(3e)。さらに、多官能性の天然物にも適用可能である(3f,3g)。なお、本反応は1-Clを出発物質としてもアミノ化が進行する。また、1-Clに対して2当量のHClO4を添加すると1-Clの還元電位は顕著に減少した(図2C)。さらにStern-Volmerプロットの結果からプロトン化された1-Clが光触媒の励起状態を消光することが示唆された(図2D)。
以上、NCSと光触媒を用いた直截的芳香族C–Hアミノ化が報告された。単純なアルキルアミンを導入でき、幅広い官能基の許容性をもつこの反応は、生物活性分子の合成終盤官能基化などへの利用が期待される。

図2. (A) 推定反応機構 (B) 最適条件及び基質適用範囲 (C) CV測定による還元電位の比較 (D) Stern-Volmerプロット

参考文献

  1. Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016,6, 610. DOI: 1021/acscatal.5b02417
  2. [a] Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc.2011,133,16382. DOI: 10.1021/ja207296y [b] Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S.J. Am. Chem. Soc.2014,136, 5279. DOI: 10.1021/ja501879c[c] Kawakami, T.; Murakami, Kei.; Itami, K. J. Am. Chem. Soc.2015, 137, 2460. DOI: 10.1021/ja5130012[d] Boursalian, G. B.; Ngai, M–Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278. DOI: 10.1021/ja4064926[e] Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L.; Falck, J. R. Science 2016, 353, 1144. DOI: 10.1126/science.aaf8713[f] Legnani, L.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162. DOI: 10.1021/acscatal.6b02576[g] Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc.2014, 136,4496. DOI:10.1021/ja501093m[h] Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science 2015, 349, 1326. DOI: 10.1126/science.aac9895[i] Pandey, G.; Singh, D.; Laha, R. Asian J. Org. Chem.2017, 6, 469. DOI: 10.1002/ajoc.201600535 [j] Boursalian, G. B.; Ham, W. S.; Mazzoti, A. R.; Ritter, T. Nat. Chem. 2016,8, 810. DOI: 10.1038/NCHEM.2529
  3. Margrey, K. A.; Levens, A.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2017, 56, 15644.DOI: 10.1002/anie.201709523
  4. Svejstrup, T. D.; Ruffoni, A.; Juliá, F.; Aubert, V. M.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 14948. DOI: 10.1002/anie.201708693
  5. [a] Lee, S. J.; Terrazas, M. S.; Pippel, D. J.; Beak, P. J. Am. Chem. Soc. 2003,125, 7307. DOI: 10.1021/ja0300463[b] Xiong, X.; Yeung, Y–Y. Angew. Chem., Int. Ed.2016, 55,16101. DOI: 10.1002/anie.201607388
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. カーボンナノベルト合成初成功の舞台裏 (2)
  2. NMRの基礎知識【測定・解析編】
  3. 『ほるもん-植物ホルモン擬人化まとめ-』管理人にインタビュー!
  4. 鉄触媒によるオレフィンメタセシス
  5. 生体分子機械の集団運動の制御に成功:環境適応能や自己修復機能の発…
  6. いまさら聞けない、けど勉強したい 試薬の使い方  セミナー(全5…
  7. ストックホルム国際青年科学セミナー・2018年の参加学生を募集開…
  8. 就職活動2014スタートー就活を楽しむ方法

注目情報

ピックアップ記事

  1. クルクミン /curcumin
  2. 高い分離能のCOF膜が作製可能な二段階構築法の開発
  3. カール・フィッシャー滴定~滴定による含水率測定~
  4. 複雑な化合物を効率よく生成 名大チーム開発
  5. 低温低圧・常温常圧窒素固定の反応開発 最新情報サマリー その1
  6. 電子豊富芳香環に対する触媒的芳香族求核置換反応
  7. ナタリー カロリーナ ロゼロ ナバロ Nataly Carolina Rosero-Navarro
  8. 諸熊 奎治 Keiji Morokuma
  9. シクロファン+ペリレンビスイミドで芳香環を認識
  10. 【食品・飲料業界の方向け】 マイクロ波がもたらすプロセス効率化と脱炭素化 低温焙煎・抽出・乾燥・凍結乾燥・噴霧乾燥・ケミカルリサイクル

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年6月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP