[スポンサーリンク]

化学者のつぶやき

可視光光触媒でツルツルのベンゼン環をアミノ化する

[スポンサーリンク]

単純なアルキルアミンが利用できる芳香族C–Hアミノ化反応が開発された。基質適用範囲が広く天然物などの多官能性分子にも適用できる。

分子間芳香族C–Hアミノ化反応

医薬品、農薬などに頻出する含窒素芳香族化合物の合成において、事前の官能基化を必要としない分子間芳香族C–Hアミノ化反応は強力な手法となる。しかし、利用可能な芳香族化合物や窒素源は未だ制限が多い。
これまでに報告されている分子間芳香族C–Hアミノ化反応は、配向基を利用するものが数多く知られている[1]
一方、配向基をもたないベンゼン環のC–Hアミノ化にはナイトレンが利用できるが、大過剰の基質を必要とする[1]。近年になって、化学量論量のベンゼン類を用いる芳香族C–Hアミノ化反応が報告された(図1A)[3]。しかし、これらの反応に利用可能な窒素源はイミド[3a-3d]、ヒドロキシルアミン誘導体[3e,3f]、アゾール[3g-3i]、Selectfluor®︎[3j]などに限られていた。
この課題に対しNicewiczらは、強力な酸化力をもつ福住触媒Me2-Mes-Acr+を用いて、一級アミンが利用できる電子豊富なベンゼン環のC–Hアミノ化反応を実現した。一方で、本論文の著者であるLeonori らは以前にフェノキシアミンを用いた芳香族C–Hアミノ化反応を報告している(図1C)[5]。本反応は二当量のアレーンと特殊なアミンが必要となるが、ベンゼン環をはじめとする様々な芳香族化合物にアルキルアミンを導入することができる。
今回、同著者らはNCSと光触媒を用いることにより、単純なアルキルアミンが利用可能な芳香族C–Hアミノ化を開発した(図1D)。本反応で特筆すべきはその官能基許容性であり、ハロゲン、ホウ素及びケイ素官能基をもつ基質でも問題なくアミノ化が進行する。さらに本反応をフロー系に適用することで一部のアニリン誘導体をグラムスケールで合成出来ることも示した。

図1. (A) (B) (C) 従来の芳香族C–Hアミノ化反応 (D) 本論文の反応

 

Practical and regioselective amination of arenes using alkyl amines
Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Nat. Chem. 2019, 11, 426.
DOI: 10.1038/s41557-019-0254-5

論文著者の紹介

研究者:Daniele Leonori
研究者の経歴:2007–2010 PhD University of Sheffield (Prof. Iain Coldham)
2010–2011 Postdoctral Research Associate, RWTH-Aachen University (Prof. Magnus Rueping)
2011–2012 Postdoctral Research Associate, Max Planck institute for Colloids and interfaces (Prof. Peter H. Seeberger)
2012–2014 Research Officer, University of Bristol (Prof. Varinder K. Aggarwal FRS)
2014–2018 Lecturer of Organic Chemistry, University of Manchester
研究内容:窒素ラジカルを介したC–N結合形成反応の開発

論文の概要

本反応における反応機構を以下に示す(図2A)。単純なアミンAに対しNCSを作用させN-クロロアミンBを発生させる。続いて、ブレンステッド酸を加えて生じるN-クロロアンモニウムCが一電子還元されアミニウムラジカルEとなる。Eは芳香族化合物へ付加しFを与え、続く一電子酸化と脱プロトン化によりアニリン誘導体Hが得られる。しかし、N-クロロアンモニウムCは芳香族を求電子的に塩素化しDを生成することが知られている[5]。芳香族アミノ化を実現させるためにはCのもつ通常の反応性を回避する必要があった。これらの課題に対し筆者らは光触媒としてRu(bpy)3Cl2を、ブレンステッド酸としてHClOを用いることで、求電子的塩素化を起こすことなくC–Hアミノ化を達成した。

本反応の基質適用範囲は広く、芳香環上にハロゲン(3a,3b)、シリル基(3c)、ボリル基(3d)が存在する場合も問題なく反応が進行する(図2B)。また、一級アミンを窒素源として用いることも可能である(3e)。さらに、多官能性の天然物にも適用可能である(3f,3g)。なお、本反応は1-Clを出発物質としてもアミノ化が進行する。また、1-Clに対して2当量のHClO4を添加すると1-Clの還元電位は顕著に減少した(図2C)。さらにStern-Volmerプロットの結果からプロトン化された1-Clが光触媒の励起状態を消光することが示唆された(図2D)。
以上、NCSと光触媒を用いた直截的芳香族C–Hアミノ化が報告された。単純なアルキルアミンを導入でき、幅広い官能基の許容性をもつこの反応は、生物活性分子の合成終盤官能基化などへの利用が期待される。

図2. (A) 推定反応機構 (B) 最適条件及び基質適用範囲 (C) CV測定による還元電位の比較 (D) Stern-Volmerプロット

参考文献

  1. Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016,6, 610. DOI: 1021/acscatal.5b02417
  2. [a] Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc.2011,133,16382. DOI: 10.1021/ja207296y [b] Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S.J. Am. Chem. Soc.2014,136, 5279. DOI: 10.1021/ja501879c[c] Kawakami, T.; Murakami, Kei.; Itami, K. J. Am. Chem. Soc.2015, 137, 2460. DOI: 10.1021/ja5130012[d] Boursalian, G. B.; Ngai, M–Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278. DOI: 10.1021/ja4064926[e] Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L.; Falck, J. R. Science 2016, 353, 1144. DOI: 10.1126/science.aaf8713[f] Legnani, L.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162. DOI: 10.1021/acscatal.6b02576[g] Morofuji, T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc.2014, 136,4496. DOI:10.1021/ja501093m[h] Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science 2015, 349, 1326. DOI: 10.1126/science.aac9895[i] Pandey, G.; Singh, D.; Laha, R. Asian J. Org. Chem.2017, 6, 469. DOI: 10.1002/ajoc.201600535 [j] Boursalian, G. B.; Ham, W. S.; Mazzoti, A. R.; Ritter, T. Nat. Chem. 2016,8, 810. DOI: 10.1038/NCHEM.2529
  3. Margrey, K. A.; Levens, A.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2017, 56, 15644.DOI: 10.1002/anie.201709523
  4. Svejstrup, T. D.; Ruffoni, A.; Juliá, F.; Aubert, V. M.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 14948. DOI: 10.1002/anie.201708693
  5. [a] Lee, S. J.; Terrazas, M. S.; Pippel, D. J.; Beak, P. J. Am. Chem. Soc. 2003,125, 7307. DOI: 10.1021/ja0300463[b] Xiong, X.; Yeung, Y–Y. Angew. Chem., Int. Ed.2016, 55,16101. DOI: 10.1002/anie.201607388
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 対決!フタロシアニンvsポルフィリン
  2. 太陽電池を1から作ろう:色素増感太陽電池 実験キット
  3. (-)-Calycanthine, (+)-Chimonanth…
  4. あなたはどっち? 絶対立体配置
  5. 有合化若手セミナーに行ってきました
  6. 2014年ノーベル化学賞・物理学賞解説講演会
  7. 次世代の放射光施設で何が出来るでしょうか?
  8. ナノの世界に朗報?!-コラニュレンのkg合成-

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. エリック・ジェイコブセン Eric N. Jacobsen
  2. (-)-ウシクライドAの全合成と構造決定
  3. ギー・ベルトラン Guy Bertrand
  4. Zoomオンライン革命!
  5. ライオン、男性の体臭の原因物質「アンドロステノン」の解明とその抑制成分の開発に成功
  6. アンソニー・スペック Anthony L. Spek
  7. 研究助成金&海外留学補助金募集:公益財団法人アステラス病態代謝研究会
  8. ちょっとキレイにサンプル撮影
  9. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  10. プメラー転位 Pummerer Rearrangement

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士

第108回の海外化学者インタビューは、スチュアート・カントリル博士です。Nature Chemist…

化学工業で活躍する有機電解合成

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全…

細胞内の温度をあるがままの状態で測定する新手法の開発 ~「水分子」を温度計に~

第266回のスポットライトリサーチは、東北大学大学院薬学研究科 中林研究室 修士二年生の杉村 俊紀(…

Chem-Station Twitter

PAGE TOP