[スポンサーリンク]

ケムステニュース

電池長寿命化へ、充電するたびに自己修復する電極材

[スポンサーリンク]

東京大学大学院工学系研究科の山田淳夫教授らは、充電するたびに自己修復を繰り返し、電池性能の劣化を防ぐ電極材料を発見した。X線の照射実験で明らかにした。材料からイオンが抜け生じた「空孔」とイオンとの間に生じる引力が自己修復の原因となることも突き止めた。電池の長寿命化への貢献が期待される。 (引用:日刊工業新聞5月17日)

より高密度で高寿命な電池の開発は、材料研究において重要なトピックであり、新たな研究成果が日々発表されています。そんな中、電池の劣化を防ぐ新しい電極材料について今回取り上げました。研究を発表したのは、東京大学大学院工学系研究科の山田淳夫教授らのグループで電極材料、電解液に加えて計算化学、反応解析と電池についてトータルに研究を行っていて、以前もケムステで研究内容を紹介したことがあります。

蓄電池は、正極と負極でイオンの授受を行うことで電気を放電、充電するものです。正極材料としては金属酸化物がよく使われていて、リチウムイオン電池ではLiCoO2などが主流となっています。この正極は層状構造をしていますが、充電の際にアルカリ金属イオンが離脱すると空孔が形成されます。すると層状構造を保っているO-O間のファンデルワールス力に影響し層が破壊されてしまいます。そのため、電池は寿命を長くするために充電に制限を設けて100%のアルカリイオンを脱離しないようにしています。充電の制限があっても正極は徐々に構造が壊れ、末期のスマホのようにすぐに電池が空になってしまう状態になっていきます。現在のところ正極の研究の主流は、高容量を持つ材料の研究であり、構造の安定化に関してはあまり報告例がないのが現状でした。

本研究で着目したのは、 Na2RuO3という酸化物で、合成後にXRDを測定したところ、ブロードなピークが観測され、乱れた積層構造をしていることがわかりました。そこでこの材料を正極の材料として簡易的なコインセルを作成し、充電と放電を行いながらXRDを測定したところ、電位の変化に応じてXRDパターンとも変化し、充電されたNaイオンが抜けている状態( Na0.5RuO3)では積層構造を、放電されてNaイオンが多く含まれている状態(Na2RuO3)では、合成直後のように乱れた積層構造をしていることがわかりました。これは、通常の蓄電池とは異なる挙動で、充電すると構造を修復していると言えます。

負極の充電時のイメージ(引用:プレスリリース

この現象について詳しく調べると、Naイオンが抜けた空孔と構造中に残存するナトリウムイオンとの間で強いクーロン引力が生まれるため、初期にはない積層構造を示すことがわかりました。さらに、なぜこの酸化物において積層構造が変わるのかについても考察していて、アルカリ金属イオンの含有量に応答して積層間の距離は変化しますが、その変化量がIrやRuといった4dや5dの遷移金属の場合では、特異的であるため構造が変わると主張しています。

実用化を考える上では、充電と放電を繰り返したときの挙動が重要になりますので、応用に関する今後の研究に期待します。またルテニウムは比較的高価な金属なので、安価な金属あるいは、高価な金属を少量添加した酸化物で同様の現象が起きれば、電気自動車を始めとするバッテリー容量が要の製品に大きな革命が起きるのではと思います。

関連書籍

関連リンクとケムステ過去記事

Zeolinite

Zeolinite

投稿者の記事一覧

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. 日本化学会、論文無料公開へ新方式
  2. 化学に触れる学びのトレイン“愛称”募集
  3. ソニー、新型リチウムイオン充電池「Nexelion」発売
  4. 米国ACSジャーナル・冊子体廃止へ
  5. GoogleがVRラボを提供 / VRで化学の得点を競うシミュレ…
  6. 高脂血症治療薬の開発に着手 三和化学研究所
  7. 第32回生体分子科学討論会 
  8. 経営統合のJXTGホールディングスが始動

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「イオンで農薬中和」は不当表示・公取委、米販2社に警告
  2. ベン・クラヴァット Benjamin F. Cravatt III
  3. 化学企業のグローバル・トップ50が発表
  4. Brønsted酸触媒とヒドロシランによるシラFriedel-Crafts反応
  5. 2016年JACS Most Read Articles Top10を眺める
  6. 米国へ講演旅行へ行ってきました:Part II
  7. アピオース apiose
  8. ポリエチレングリコール結合ルテニウムカルベン錯体
  9. BASF、新規のキラル中間体生産プロセスを開発!
  10. 八島栄次 Eiji Yashima

関連商品

注目情報

注目情報

最新記事

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

コロナウイルスが免疫システムから逃れる方法(1)

新型コロナウイルスによる感染症が、世界中で猛威を振るっています。この記事を書いている私も、大学の閉鎖…

換気しても、室内の化学物質は出ていかないらしい。だからといって、健康被害はまた別の話!

Human health is affected by indoor air quality. On…

Chem-Station Twitter

PAGE TOP