[スポンサーリンク]

スポットライトリサーチ

葉緑素だけが集積したナノシート

[スポンサーリンク]

第235回のスポットライトリサーチは、立命館大学 民秋研究室で博士研究員をされていた、庄司 淳(しょうじ すなお)さんにお願いしました。庄司さんは現在は北海道大学 長谷川研究室で研究員を務められています。

民秋研究室では、天然光合成の主役の色素であるクロロフィル分子に注目し、有機化学、光化学、生化学など多様な科学の観点から幅広い研究を展開されています。

今回紹介いただける内容は、クロロフィルをうまく修飾することにより集積形態を制御して二次元のナノシートを形成できたといった成果です。民秋研では以前にはクロロフィルでナノチューブを作った成果を発表されていましたが(J. Am. Chem. Soc. 141, 1207-1211 (2019))、今回はナノシート! 精密合成からの匠の技を披露されています。人工光合成の創成・天然光合成の機構解明に向けての新しいアプローチの可能性を感じさせていただける素晴らしい成果で、Sci. Rep.誌に公開されており、立命館大学からプレスリリースもされています。

“Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies”
Sunao Shoji, Tetsuya Ogawa, Shogo Matsubara & Hitoshi Tamiaki,
Sci. Rep., 9, 14006 (2019) DOI: 10.1038/s41598-019-50026-1

民秋均 教授からは、庄司さんと本研究テーマについて以下のようなコメントをいただきました。

今回の庄司さんの研究成果は、人工光合成アンテナ研究から展開されたものです。最初から意図して行ったのではなく、色々なモデル化合物を合成して、その自己会合体の超分子構造を片っ端から観察している中で、偶然面白いものが見つかった結果をまとめたものです。庄司さんは粘り強く研究を行うことで、素晴らしい成果をあげることができました。「山師」的な研究ですが、自然界の近辺には、金脈がまだまだゴロゴロ隠されていることを示す好例です。このような「ショットガン」的研究も、当たればでかい。コツコツと地道に研究を進めていくことが、とても大事であることを示してくれた成果でした。

それでは、庄司さんからのメッセージをご覧ください!

Q1. 今回のプレスリリース対象となったのはどのような研究ですか?

クロロフィル分子(葉緑素)が集積したナノシートを人工的に世界で初めてつくった研究です。

立命館大学生命科学研究科の民秋先生の研究室では、光合成色素であるクロロフィル分子(葉緑素)をケミストリーの視点で研究しています。光合成をする生物は、地球上に降り注ぐ太陽光を効率よく吸収して、その光エネルギーを化学エネルギーに変換しています。クロロフィル分子は、光合成の最初の過程である光吸収・励起エネルギー伝達・電子移動の役割を担う重要な色素分子です。

光合成する生物には、クロロフィル色素(バクテリオクロロフィル-c, d, e分子)の自己集積体を光捕集アンテナ(Light-Harvesting Antenna)に使うもの(緑色光合成細菌)がいます。この細菌は、太陽光がほとんど届かない場所(深いところで水深150 m)でも、光合成して生育する驚異的な生物です。そのクロロフィル集積体は、複数の分子間相互作用(配位結合・水素結合・p-pスタッキング)でJ会合体を形成しており、ナノチューブ状やナノシート状の超分子構造体であると想定されています。

今回合成したクロロフィル誘導体は、固体状態の集積体を非極性溶媒中で熟成することによって、熱力学的により安定な構造へと変化し、ナノシートが形成することを見出しました。天然系を模倣したモデルとして、光合成の機能解明や人工光合成への応用が期待されます。

Fig1_Shoji

図1. (a) 天然産(左)と合成(右)クロロフィルの分子構造, (b) 調製直後(左)と調製1週間後(右)のクロロフィル集積体のサンプル溶液の写真, (c) UV-Vis-NIR吸収スペクトル, (d) AFM像.

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究では、クロロフィル分子のp共役には影響を与えない位置(17位)に水素結合性のアミド基とウレア基を導入しました。過去の研究で、自己集積するクロロフィル分子の17位上に長鎖アルキル基を修飾すると、ナノチューブを形成することがわかっていました1–3)。この位置は、クロロフィル分子のJ会合には直接関わりませんが、ナノ構造を形成する上で重要だと考えられています。今回合成したクロロフィル誘導体は、アミド基とウレア基の強い水素結合に引っ張られて、自己集積体のナノ構造が変化すると予想しました。

クロロフィルの単量体は青緑っぽい色で、J会合体は濃い緑色をしています。本研究で調製した固体のクロロフィル集積体は、調製直後は青緑色をしていたので、当初は秩序正しい集積体を形成しないものかと思いました。しかし、時間が経つと濃い緑色に変化していました。実験する時は、サンプルを注意深く観察することをいつも心がけているのですが、熟成することで色の変化(超分子構造の変化)があることに気付けたのが良かったと思います。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

天然の光合成系で見られるような光機能性のナノ構造体を人工的に作りたいと何となく思っていました。過去にクロロフィル分子の集積体でナノチューブを作っていたので、次はナノシートを作ろうと考えていました。しかし、分子の集積体がどのようなナノ構造を形成するか予測することは難しいので、いろんな論文を参考にしながら実際にサンプルを調製してみることにしました。ナノシート構造をつくる手がかりは何もありませんでしたが、アルキル基や水素結合性の置換基をもつクロロフィル分子を合成して集積化挙動を調べている時に、アミド基とウレア基の2つをもつクロロフィル誘導体がきれいに並ぶことが偶然わかりました4)。系統的にクロロフィル分子を合成して物性を調べたことが、本研究の成功につながったと思います。

Q4. 将来は化学とどう関わっていきたいですか?

単分子の物性にも興味がありますし、複数の分子から出来上がる超分子にも興味があります。天然では、様々な分子が相互作用することで、機能を発現しているものがたくさんあります。1分子では達成できない機能も複数の分子から構成される超分子系なら解決できる可能性があります。将来的には、系全体として優れた機能をもつ超分子系を作りたいと考えています。私は現在、工学部に所属していますので、学術的に重要な研究と社会に貢献できるような研究の両方をしっかりと行いたいと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は何事もチャレンジして経験することが大事だと思っています。研究室に所属して、様々な機会を与えていただいたので、より化学の楽しさを学び、人生が変わったと思います。昨年はドイツで研究させていただく機会があり、世界トップレベルの研究を知るとても良い経験でした。自分の知らない世界を体験することは、新しい価値観が得られてとても良いと思います。学会等で発表することも素晴らしい経験になると思います。たくさんの研究を知り、いろんな方と出会う良い機会です。今回、スポットライトリサーチのお話をいただけたのもシンポジウムがきっかけで、記事の執筆はとても良い経験になりました。この記事を読んでいただいた方とも、学会などでお会いできるのを楽しみに思っています。

参考文献

  • Shoji, T. Hashishin, H. Tamiaki, Chem. Eur. J., 18, 13331–13341 (2012).
  • Shoji, T. Ogawa, T. Hashishin, S. Ogasawara, H. Watanabe, H. Usami, H. Tamiaki, Nano Lett., 16, 3650–3654 (2016).
  • Sengupta, F. Würthner, Acc. Chem. Res., 46, 2498–2512 (2013).
  • Shoji, T. Ogawa, T. Hashishin, H. Tamiaki, ChemPhysChem, 19, 913–920 (2018).

関連リンク

研究者の略歴

Shoji.jpg庄司 淳(しょうじ すなお)

所属:北海道大学大学院 工学研究院 応用化学部門 先端材料化学研究室

専門:有機化学、超分子化学

略歴:2014年9月  立命館大学大学院 生命科学研究科 生命科学専攻博士課程 修了 (民秋研究室)

2014年4月  日本学術振興会 特別研究員(DC2)

2014年10月 日本学術振興会 特別研究員(PD)

2016年4月  立命館大学 総合科学技術研究機構 博士研究員 (民秋研究室)

2018年1~3月 ウルツブルク大学 客員研究員 (Frank Würthner研究室)

2019年4月  北海道大学大学院 工学研究院 応用化学部門 博士研究員 (長谷川研究室)

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JK。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 有機合成化学協会誌2018年10月号:生物発光・メタル化アミノ酸…
  2. 環サイズを選択できるジアミノ化
  3. 蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH
  4. 超微量紫外可視分光光度計に新型登場:NanoDrop One
  5. TLCと反応の追跡
  6. Whitesides教授が語る「成果を伝えるための研究論文執筆法…
  7. 大量合成も可能なシビれる1,2-ジアミン合成法
  8. DNAを人工的につくる-生体内での転写・翻訳に成功!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ジンケ アルデヒド Zincke Aldehyde
  2. 投票!2013年ノーベル化学賞は誰の手に??
  3. トリメチルアルミニウム trimethylalminum
  4. ビニグロールの全合成
  5. 文具に凝るといふことを化学者もしてみむとてするなり⑧:ネオジム磁石の巻
  6. ジョージ・ホワイトサイズ George M. Whitesides
  7. 春日大社
  8. サーモサイエンティフィック「Exactive Plus」: 誰でも簡単に精密質量を!
  9. 超原子結晶!TCNE!インターカレーション!!!
  10. BASFとはどんな会社?-2

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

【書籍】電気化学インピーダンス 数式と計算で理解する基礎理論

(↓kindle版)概要インピーダンス測定の結果をいかに解釈すべきか.その理…

国際化学オリンピック、日本の高校生4名「銀」獲得

文部科学省は2020年7月31日、オンラインで開催された「第52回国際化学オリンピック」に参加した高…

有機合成化学協会誌2020年8月号:E2212製法・ヘリセン・炭素架橋オリゴフェニレンビニレン・ジケトホスファニル・水素結合性分子集合体

有機合成化学協会が発行する有機合成化学協会誌、2020年8月号がオンライン公開されました。今回は担当…

第八回ケムステVシンポジウム「有機無機ハイブリッド」を開催します!

夏真っ盛りですね。某ウイルスのもろもろに目を奪われがちですが、この季節は熱中症にも気をつけましょう。…

巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる

第268回のスポットライトリサーチは、金沢大学医薬保健研究域薬学系(大宮研究室)の佐藤 由季也(さと…

第111回―「予防・診断に有効なナノバイオセンサーと太陽電池の開発」Ted Sargent教授

第111回の海外化学者インタビューは、Ted Sargent教授です。トロント大学電気・計算機工学科…

アレノフィルを用いるアレーンオキシドとオキセピンの合成

脱芳香族化を伴う直接的な酸化により芳香族化合物からアレーンオキシドとオキセピンを合成する手法が開発さ…

ケムステニュース 化学企業のグローバル・トップ50が発表【2020年版】

It's no secret that the COVID-19 pandemic ha…

Chem-Station Twitter

PAGE TOP