[スポンサーリンク]

一般的な話題

N-オキシドの性質と創薬における活用

[スポンサーリンク]

 

N-オキシドは一部の天然物に含まれ、食品・医薬品などの代謝物にも見られるほか、医薬品そのものとしても応用されています。
本記事では、J. Med. Chem 誌に掲載されたオープンアクセスの総説論文 “Medicinal Chemistry of Drugs with N-Oxide Functionalities” について紹介します。

概要

N-オキシドは水溶性の向上や、膜透過性や免疫原性の低下といったプロパティに寄与することが知られている。また、N-オキシドは特徴的な酸化還元特性を持ち、薬物の標的化や細胞毒性に重要である場合もある。その基礎となるメカニズムの多くは最近になって解明されたものが多く、創薬・ヘルスケア分野におけるN-オキシドの応用は増加の傾向にある。本総説では、N-オキシドの特性とその合成について簡単に説明し、バイオメディカル分野におけるN-オキシドの現在の応用例について挙げ、その生物学的活性を担う基本的な分子メカニズムについて説明する。

N-オキシドとは

N-オキシドとは、第三級アミンの酸化体 (アミンオキシド) や芳香族アミンの酸化体 (ピリジン-N-オキシドなど) を指す (下図 1)。イミンの酸化体 (ニトロン) も N-オキシドと考えることができるが、ニトロンはアミンオキシドやピリジン-N-オキシドとは異なる特徴的な化学的性質を有する。ヒドロキシルアミンやニトロソ化合物のような他の酸素化窒素種との混同に注意する必要がある (下図 1)。

図1  N-オキシド類とその他の酸素化窒素種
(元論文 Fig. 1)

N-オキシドは自然界に遍在している。例えばトリメチルアミン-N-オキシド (TMAO) は海水魚や甲殻類のタンパク質安定化剤 (抗変性作用を有する) として作用するが、一方でヒトにおいては癌や心血管疾患に関連する可能性のある化合物となる。また、多くのN-オキシドは対応するアミン・ピリジン誘導体の代謝物であり、医薬品や天然物の摂取により生成する。さらに N-オキシドは、MRI 用試薬、プロドラッグ、抗菌薬など、様々な創薬関連応用がなされている。

N-オキシドの化学的特徴

図2  N-オキシド類の化学的特徴
(元論文 Fig. 2)

N-オキシドの N+-O 結合は一般的に 1 より大きな結合次数を持ち、O から N への逆供与がそれに寄与している。芳香族N-オキシドの方が、N+-O 結合がやや短く安定である。これは反応性の傾向にも影響しており、アミンオキシドは芳香族N-オキシドよりも還元を受けやすい。 N+-O 結合の双極子モーメントは 4.0~5.0 Dと大きく、アミンオキシドは一般的に芳香族N-オキシドよりも高い極性を有する。N+-O 結合の双極子モーメントの値は、他の極性結合、例えば P-O、P-S、S-O などよりも著しく大きい。

N-オキシドは弱塩基であり、生理的条件下では双性イオン性の純中性型が支配的である。水やアルコールと極めて安定な水素結合を形成し、これが多くの特性を持つ理由となる。例えば N-メチルモルホリン-N-オキシド (NMO) はセルロースを溶解するため、リヨセルの製造に使用される。さらに NMO は有機化学において重要な酸化剤であり、例えば Upjohn 酸化 (NMO を再酸化剤として用いる四酸化オスミウムでの酸化反応) Ley-Griffith (TPAP) 酸化で利用される。

N-オキシドは一般に室温で安定であるが、アミンオキシドは求電子剤や遷移金属の存在下、高温で分解や転位を起こす。アミンオキシドの典型的な反応に、Meisenheimer転位Cope脱離Polonovski開裂などがある (下図3 A~C)。芳香族N-オキシドはより安定なためそのような反応性を持たないが、ピリジン-N-オキシドは、チロシン/チロシルラジカル対と同様の酸化還元特性を持つことが示されており、人工光合成において電子シャトル分子として働く (下図3 D)。

図3  N-オキシド類の反応
(元論文 Fig. 3)

N-オキシド類の合成

下図4のような合成法が知られている。過酸化水素 (A, C) や m-クロロ過安息香酸 (B) などの活性種を用いるのが一般的である。

図4  N-オキシド類の合成
(元論文 Fig. 4)

N-オキシド類の創薬応用

N-オキシドを含む生理活性物質はいくつかの天然物に見られる (元論文 Fig. 5、割愛) ほか、創薬分野への応用もなされている。あるフロキサン誘導体 (1,2,5-オキサジアゾール-N-オキシド) は一酸化窒素 (NO•) 様の血管拡張作用を持つほか、抗リーシュマニア作用を示す。血液凝固第 XIa 因子阻害剤の設計においては、N-オキシドの強い水素結合アクセプターとしての性質を活用し、タンパク質のアニオン性部位(G573) と相互作用するなどの特性を示している。

図5 第 XIa 因子とピリジン-N-オキシド型リガンド分子との相互作用
(元論文 Fig. 6)

N-オキシドを含む医薬品として最も有名なものは、育毛薬のミノキシジル (図5 左) であろう。元来は血管拡張薬として開発されており、育毛の正確な作用機序は不明とされているが、カリウムチャネルを開口して血管を拡張する・頭皮において NO•様作用を示すことなどにより、毛包へ酸素、栄養素、ホルモン等を供給し、発毛を促進している可能性がある。

クロルジアゼポキシド (図6 中央) は世界で初めて承認されたベンゾジアゼピン系薬剤であり、現在でも処方されている抗不安・痙攣薬である。中枢作用を示すには血液脳関門 (BBB) を透過する必要があるが、N-オキシド の BBB 透過性については議論があり、代謝安定性などの観点から明確になっていない。

ニコチン酸類縁体であるアシピモックス (図6 右) は治療抵抗性の高脂血症患者に対する薬剤として開発された。

 

図6 芳香族 N-オキシド構造を有する医薬品
(元論文 Fig. 7)

他の生理活性 N-オキシド類として、カルバドックスやオラキンドックス(図7 左および中央)が知られている。これらは天然物であるヨウジニンやミキシンの類縁体である。これらは家畜の成長を促進する飼料添加物として獣医学分野で使用されてきた。いずれも動物の消化管内の病原性細菌の増殖を抑制することで成長促進作用を示す。一方、オラキンドックスは光アレルギー反応を惹起することも報告されている。両薬剤の作用機序は完全には解明されていないが、還元的活性化と反応性ラジカル種の形成が抗菌活性に寄与すると考えられる。4-アラニルピリジン-N-オキシド (図7 右) やにも抗菌活性が報告されており、これらはいわゆるクオラムセンシングと呼ばれる現象を阻害して抗菌活性を示すと考えられているが、こちらも詳細な作用機序は不明である。

図7 芳香族 N-オキシド構造を有する抗菌薬
(元論文 Fig. 8)

また、N-オキシドは第三級アミンや含窒素芳香環の主要な生体内代謝物として検出される。N-オキシドに酸化代謝されることにより、一般的に親化合物よりも水溶性が向上し、排泄されやすくなる。例えば三環系抗うつ薬のイミプラミンやアミトリプチリンは、フラビン含有モノオキシゲナーゼ (FMO) によって酸化され、対応するN-オキシド (図8) に変換される。それぞれの N-オキシド体は、親化合物よりも作用発現が速く、副作用 (眠気、鎮静、口渇、発汗、めまい等) が少ないとされる。一方、これらの N-オキシドは親化合物のアミンに還元的代謝を受ける場合もあり、プロドラッグとしての利用の可能性も検討されている。

図7 三環系抗うつ薬 N-オキシド型代謝物
(元論文 Fig. 9)

その他のトピック

その他N-オキシドを用いたカンプトテシン (抗がん剤) やスタウロスポリン (プロテインキナーゼ阻害剤) のプロドラッグ化、P450 などの酸化還元酵素や低酸素環境を応用したプロドラッグ化、MRI 造影剤の修飾、ポリマーの修飾による標的指向性の向上などにも触れられている。

おわりに

長くなったため最後はかいつまんでしまいましたが、元論文 “Medicinal Chemistry of Drugs with N-Oxide Functionalities” はオープンアクセスなので、気になった方はぜひ本文に目を通してみてください。個人的には N-オキシドそのものの毒性の懸念や酸化還元への不安定性から積極的な創薬応用は憚ってしまいますが、うまく利用することで思いがけない効果を発揮する可能性があるのも事実で、性質や合成法を理解した上でここぞの一手として使用を検討してみるのもありかと思いました。

関連記事

N-オキシドの合成 Synthesis of N-oxide
【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで (本記事に登場したミノキシジルとクロルジアゼポキシドに関する逸話が掲載されています)

関連書籍

Heterocyclic N-Oxides (Topics in Heterocyclic Chemistry Book 53) (English Edition)

Heterocyclic N-Oxides (Topics in Heterocyclic Chemistry Book 53) (English Edition)

¥31,278(as of 01/29 04:35)
Release date: 2017/07/12
Amazon product information
薬物代謝学: 医療薬学・医薬品開発の基礎として

薬物代謝学: 医療薬学・医薬品開発の基礎として

加藤隆一, 山添康, 横井毅
¥4,180(as of 01/29 04:35)
Amazon product information
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. AI勉強会+若手セミナー@高知大学
  2. 有機合成化学協会誌2021年6月号:SGLT2阻害薬・シクロペン…
  3. ガラス器具の洗浄にも働き方改革を!
  4. 2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予…
  5. 有機反応を俯瞰する ー縮合反応
  6. 有機光触媒を用いたポリマー合成
  7. 無機物のハロゲンと有機物を組み合わせて触媒を創り出すことに成功
  8. 結晶作りの2人の巨匠

注目情報

ピックアップ記事

  1. 第43回―「均質ナノ粒子の合成と生命医学・触媒への応用」Taeghwan Hyeon教授
  2. 肩こりにはラベンダーを
  3. 昭和電工、青色LEDに参入
  4. 第65回―「タンパク質代替機能を発揮する小分子の合成」Marty Burke教授
  5. 化学研究ライフハック:Twitter活用のためのテクニック
  6. 化学メーカー発の半導体技術が受賞
  7. キラルアニオン相間移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応
  8. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その1
  9. GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?
  10. カーボンナノチューブ量産技術を国際会議で発表へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年6月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP