[スポンサーリンク]

スポットライトリサーチ

ポルフィリン中心金属の違いが薄膜構造を変える~配位結合を利用した新たな分子配向制御法の開発~

[スポンサーリンク]

第368回のスポットライトリサーチは、京都大学大学院 理学研究科(化学研究所・長谷川研究室)・冨田 和孝 さんにお願いしました。

有機太陽電池やバイオセンサーなどの機能を発揮する重要部分を担うのは薄膜です。薄膜中において分子を整然と並べるのか、乱雑に堆積させるのか、また分子を横に倒して並べるのか、縦に並べるのかといった分子の並べ方の制御は、材料物性を自由に制御するために必要と言われています。今回ご紹介するのは、初めて配位結合を分子配向制御に用い、テトラピリジルポルフィリンの垂直配向という、この類縁化合物では珍しい分子の並べ方を実現したという成果です。
本成果はChemical Communications 誌 原著論文・Outside Back Cover、およびプレスリリースに公開されています。Outside Back Cover画像は冨田さん自身が作成された画像で、本記事のトップ画像にも使用させていただいております。

“Control of Supramolecular Organizations by Coordination Bonding in Tetrapyridylporphyrin Thin Films”
Tomita, K.; Shioya, N.; Shimoaka, T.; Wakioka, M.; Hasegawa, T., Chemical Communications, 2022, 58, 2116–2119. doi:10.1039/d1cc06169k

研究室を主宰されている長谷川 健 教授から、冨田さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

冨田和孝さんは,学部時代に有機合成化学の研究室で一年間みっちり合成に取り組まれてから,分光分析の当研究室に来られました.ここに来られてから,一分子のイメージで化合物をとらえることに加えて,薄膜中での“分子集合構造”を理解することの重要性を理解したことで,分子構造と物性の本質的なつながりに開眼されたように思います.我々の研究室では,分子集合構造を結晶多形と分子配向の二つの視点から協同的に解析し,非晶の構造まで詳しく明らかにできるpMAIRS法を先駆的に開発しており,冨田さんはこれを十全に活用した成果を次々に明らかにしてくれました.さらに,博士課程に進学後は,有機合成の経験を生かして自ら分子設計と合成を行ったことの総合的な成果が,本成果につながりました.大学院という場をもっとも自発的に有効に活用してくれ,ご本人の研究力が大きく成長する様子を見ることができ,我々も大変素晴らしい経験ができました.このような意欲的で未来に輝く自分を想像して楽しんでくれる学生さんのご参画を,今後も大いに期待したいと思います.

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

p共役骨格からなる分子性半導体を活性層に用いた有機薄膜デバイスは、次世代の光電子デバイスとして大きな注目を集めています。このような材料の物性を自由に制御するためには、薄膜中での分子の並び(分子配向)を自在に制御することが重要です。これまで、分子の共役環平面を基板に対して平行に並べる(face-on配向)試みは数多く行われていました。具体的には、水素結合による2次元的な超分子構造を利用してface-on配向を形成する方法[1,2]や、基板表面をグラフェンで被覆し、表面と材料分子のπ–π相互作用を利用する方法[3–5]がありました。一方、共役環を基板に対して垂直に配向させる(edge-on配向)ための制御手法は、これまで開発されていませんでした

本研究では、テトラピリジルポルフィリン(TPyP、図1a)を配位結合によって強く分子間相互作用させ、被覆なしのシリコン基板上にedge-on配向させることに初めて成功しました (図1b)。この際、ポルフィリンの中心金属として二価のFe, Co, Ni, Cuイオンを導入し、配位結合を形成するdz2 軌道の電子数を系統的に変えることで(図2)、ピリジル基の非共有電子対の受容性を段階的に制御し、このときの薄膜構造の変化を調べました。二次元微小角入射 X 線回折法 (2D-GIXD)と多角入射分解分光法(MAIRS)[6]による構造解析の結果、最も受容性の高いFe2+を導入したときに狙い通りedge-on配向が実現しました。ここで中心金属をCo2+にすると、結晶多形を維持したまま配向性を失い、Ni2+やCu2+にすると結晶多形を変えつつface-on配向になることもわかりました(図1b)。これら一連の結晶多形と配向の変化は、dz2軌道の電子数がFe2+からCu2+の順に、0個、1個、2個、2個と増加し、それに応じて配位結合の形成能が低下することと対応しています。このように、TPyPの中心金属のみを変えるだけで、edge-on配向からface-on配向までを作り分けできることを明らかにしました。

図1 テトラピリジルポルフィリン(TPyP)の化学構造(a)と本研究で実現した超分子構造の模式図(b)

図2 ポルフィリン環の中心金属の電子配置とdz2軌道の形状

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究テーマで工夫したのは、中心金属イオンの選択です。「薄膜構造を電子配置に基づいて系統的に整理する」という研究目的と、「金属TPyPが容易に合成できる」という実現可能性の両方の要因に基づいて選択しました。学部時代に有機合成の研究室に所属しており、合成のスキルが少しあったため、合成可能か否かを自分で判断できました。私の研究室では、合成のスキルを活かして成果を出したのは初めてでした。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

MAIRSスペクトルの解釈が難しかったです。金属イオンがFe2+とCo2+のときには、ピリジル環の伸縮振動νpy(ring)のバンドが2つあらわれ、Ni2+とCu2+のときは1つになります(図3a)。当初は、この違いをうまく説明できませんでした。そこで、ピリジンやピリジル基を持つ化合物の赤外スペクトルの研究を徹底的に探索した結果、配位によってνpy(ring)バンドが高波数シフトするという報告[7]を見つけ、高波数側のバンドの出現は配位結合が原因であることを突き止めました。さらに、このことから、MAIRS法を用いて、配位したピリジル基とフリーのピリジル基を切り分けて配向解析できることがわかりました(図3b)。また、波数シフトの大きさから配位結合の強度が比較でき、この結果がdz2軌道の電子配置から推測される結合の強さと辻褄が合いました

図3 金属TPyPのpMAIRSスペクトル(a)と分子配向の描像(b)

Q4. 将来は化学とどう関わっていきたいですか?

来年度(2022年度)から、化学メーカーで働くことが決まっています。すでに仕事内容の概観は伝えられており、主に分光分析による材料の評価を行う予定です。また、有機合成のスキルも少しあるため、分光学と有機化学の両方の視点を活かすことで、オリジナリティーの高い仕事をしたいと思っています。具体的には、分光分析で得られた結果を説明するだけでなく、さらに分子設計にフィードバックするところまでを行えるようになりたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

薄膜中の分子集合構造が気になったら、MAIRS法も検討してみてください。官能基ごとに定量的に分子配向解析ができ、同時に分子間相互作用の解析もできます。そして、分子集合構造の解析における赤外分光法の有用性を実感できると思います。私が有機合成の研究をしていた時は、カルボニル基や水酸基の有無を判定するためにしか使っていなかったので、MAIRS法の説明を聞いたときに、IRスペクトルから得られる情報量の多さに衝撃を受けました。この出来事が、分野が異なる今の研究室に移るきっかけになりました。この記事を通して、MAIRS法のことを知っていただければ幸いです。

関連リンク

  1. T. Nakamura, N. Shioya, T. Shimoaka, R. Nishikubo, T. Hasegawa, A. Saeki, Y. Murata, R. Murdey and A. Wakamiya, Chem. Mater., 2019, 31, 1729. DOI: 10.1021/acs.chemmater.8b05237
  2. D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi and J. Kido, Adv. Funct. Mater., 2011, 21, 1375. DOI: 10.1002/adfm.201001919
  3. M. Nanditha M. Dissanayake, A. A. D. T. Adikaari, R. J. Curry, R. A. Hatton, S. R. P. Silva, Appl. Phys. Lett. 2007, 90, 253502. DOI: 10.1063/1.2749863
  4. Mao, R. Wang, Y. Wang, T. Niu, J. Zhong, M. Huang, D. Qi, K. Loh, A. Wee, W. Chen, Appl. Phys. Lett. 2011, 99, 093301. DOI: 10.1063/1.3629812
  5. K. Xiao, W. Deng, J. K. Keum, M. Yoon, I. V. Vlassiouk, K. W. Clark, A. Li, I. I. Kravchenko, G. Gu, E. A. Payzant, B. G. Sumpter, S. C. Smith, J. F. Browning, D. B. Geohegan, J. Am. Chem. Soc. 2013, 135, 3680. DOI: 10.1021/ja3125096
  6. T. Hasegawa, N. Shioya, Bull. Chem. Soc. Jpn. 2020, 93, 1127. DOI: 10.1246/bcsj.20200139
  7. S. Perelygin and M. A. Klimchuk, J. Appl. Spectrosc., 1976, 24, 43. DOI: 10.1007/BF01100716

研究者の略歴

名前:冨田 和孝とみた かずたか
所属:京都大学大学院理学研究科化学専攻 機能性界面解析分科 長谷川研究室 博士後期課程 3年 (2022年3月現在)
研究テーマ:薄膜中のポルフィリン超分子構造の制御
略歴:
2017年3月 慶應義塾大学理工学部応用化学科 卒業
2019年3月 京都大学大学院理学研究科化学専攻 博士前期課程 修了
2019年4月– 京都大学大学院理学研究科化学専攻 博士後期課程
2020年4月– 日本学術振興会特別研究員(DC2)

hoda

投稿者の記事一覧

学部生です。機械学習を勉強しています。

関連記事

  1. 米国版・歯痛の応急薬
  2. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻…
  3. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ②
  4. カーボンナノベルト合成初成功の舞台裏 (1)
  5. 規則的に固定したモノマーをつないで高分子を合成する
  6. 和製マスコミの科学報道へ不平不満が絶えないのはなぜか
  7. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click…
  8. 保護基のお話

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!
  2. 化学企業のグローバル・トップ50が発表【2018年版】
  3. 米国、カナダにおけるシェール・ガスによるLNGプロジェクトの事業機会【終了】
  4. 芳香環のハロゲン化 Halogenation of Aromatic Ring
  5. リアルタイムで分子の自己組織化を観察・操作することに成功
  6. 石見銀山遺跡
  7. Chem-Station開設5周年へ
  8. 若手&高分子を専門としていない人のための『速習 高分子化学 入門』【終了】
  9. ケムステVシンポまとめ
  10. 超一流誌による論文選定は恣意的なのか?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

in-situ放射光X線小角散実験から明らかにする牛乳のナノサイエンス

第425回のスポットライトリサーチは、高エネルギー加速器研究機構 物質構造科学研究所(物構研)の高木…

アセトアミノフェン Acetaminophen

 アセトアミノフェン (acetaminophen) は、有機化合物の一つ。海外ではパラセタ…

不安定な高分子原料を従来に比べて 50 倍安定化することに成功! ~水中での化学反応・材料合成に利用可能、有機溶媒の大幅削減による脱炭素に貢献~

第424回のスポットライトリサーチは、京都工芸繊維大学大学院工芸科学研究科 バイオベースマテリアル学…

【10月開催】マイクロ波化学ウェブセミナー

<内容>今月もテーマを分けて2回開催いたします。第一…

越野 広雪 Hiroyuki Koshino

越野 広雪(こしの ひろゆき)は、NMRやマススペクトルなどのもとにした有機分子の構造解析を専門とす…

bassler ボニー・L.・バスラー Bonnie L. Bassler

ボニー・L.・バスラー (Bonnie Lynn Bassler , 1962年XX月XX日-)は、…

電子を閉じ込める箱: 全フッ素化キュバンの合成

第 423 回のスポットライトリサーチは、東京大学 工学系研究科 化学生命工学専…

プラズモンTLC:光の力でナノ粒子を自在に選別できる新原理クロマトグラフィー

第422回のスポットライトリサーチは、名古屋大学 大学院工学研究科 鳥本研究室の秋吉 一孝 (あきよ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2022/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

クオラムセンシング Quorum Sensing

クオラムセンシング (Quorum Sensing)クオラムセンシング (Quorum Sens…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP