[スポンサーリンク]

一般的な話題

NBSでのブロモ化に、酢酸アンモニウムをひとつまみ

[スポンサーリンク]

 

芳香環のブロモ化といえば、構造活性相関の取得はもちろんの事、カップリング反応の足場としても活躍する頻出反応の一つです。さまざまなブロモ化試薬が市販されていますが、第一選択としては N-ブロモスクシンイミド (NBS) を用いる方も多いのではないでしょうか。
しかし安価なブロモ化試薬はその反応性の高さゆえ、位置選択性に悩まされることが多かったり、多置換反応が起きたり、予期せぬ酸化反応が進行したりするなど、困りごとも多く発生します。そんな時、(置換基によりますが) 安価で便利な “塩” (触媒) があるのです!

NBS でのブロモ化触媒としての酢酸アンモニウム

やや昔になりますが、2007年、”A facile nuclear bromination of phenols and anilines using NBS in the presence of ammonium acetate as a catalyst” と題した論文[1]が Journal of Molecular Catalysis A: Chemical 誌に掲載されました。酢酸アンモニウムを触媒としたフェノールとアニリンの臭素化反応に関する論文です。内容を簡潔に表す Scheme はこちら。


図1  NBS と酢酸アンモニウムを用いた芳香族ブロモ化反応

要はヒドロキシ基やアミノ基のような電子供与性基のパラ位 (パラ位が塞がれている場合はオルト位) のブロモ化反応です。それだけでは何て事ありませんが、位置選択性が高く、数分程度の短時間で完結し、しかも高収率であるというのが本反応の特筆すべき点です。
10 mol% の酢酸アンモニウムを基質と混ぜ、室温、アセトニトリル中で撹拌しながら1当量の NBS を加えて回すだけで、高収率で位置選択的なブロモ化が進行します。筆者の経験では、基質がアセトニトリルに溶解しなくても懸濁状態でしっかり回せば問題なく行きますなお、NBS の添加は最後に行わないと副反応が進行する可能性があります。後処理は一般的な分液と必要に応じたカラムで OK です。また、生成物がアセトニトリルに溶解しなければ、吸引濾取しアセトニトリルで洗浄して work up 完了です。酢酸アンモニウムなぞ安価もいいところの試薬です。それを触媒量添加するだけなのでとてもコストパフォーマンスの良い反応だと思います。
以下に、論文[1]から引用した実施例を抜粋します。

図2  NBS と酢酸アンモニウムによる芳香族ブロモ化の反応例

足掛かりとなる置換基が多数存在する場合、基本的にはハメット則に従い強い電子供与性基の方が優先されるようです (-NH2 > -OH > -OMe > -NHAc)。

反応機構は?

論文[1]よりも前に、NBS と酢酸アンモニウムを用いたカルボニルα位のブロモ化反応が報告されています[2]。そちらで提唱されたメカニズムはこちら。

図3  NBS と酢酸アンモニウムの反応メカニズム[2]

この式によると、まず (1) で酢酸アンモニウムが電離し、プロトン移動によりアンモニアが系中で生じます。そのアンモニアが NBS を還元し、臭素Br2、スクシンイミド、窒素を生成します。さらに臭素Br2がアンモニアと反応して臭化水素となります。ここで生じた臭素Br2と臭化水素がブロモ化剤として作用します。論文[1]の著者らもこちらの反応メカニズムを支持しています。ただし、この反応式だと量論量の酢酸アンモニウムが必要な気がしますので、触媒量でも高収率で反応は成功するという事実にはやや謎が残ります (使えるならまぁいいんですけど)。

追記(2021/06/28): ケムステスタッフの Macy さんより、上の反応機構の謎についてコメントをいただきました。ありがとうございます。

この部分ですが、触媒量の強酸であるHBrが発生しているので、NBSのスクシンイミドのカルボニル基を活性化してBrの求電子性を上げていることが鍵だと思います。よくチオグリコシドの活性化にNISと触媒量のTfOHを入れますが、同じ機構です。
強酸の添加ではなく、中性の塩を入れるだけで同じような効果が得られるという素晴らしい反応だと思います。

他のハロゲン化剤ではどうなの?

筆者が NBS と同じ条件で N-クロロスクシンイミド (NCS) を用いアニリン誘導体を処理したところ、位置選択的なクロロ化体は一応取れたものの、収率は30%程度かつ副生成物の残渣が大量に出てきて精製が困難でした。論文[3]によると、NCS は反応性が低いため酢酸アンモニウムではうまくいかず、代わりに触媒量の塩化鉄(III) が必要になるとのことです。
また、N-ヨードスクシンイミド (NIS) は試したことがありませんが、論文[2]によるとアセトニトリル中で NIS と酢酸アンモニウムを混合すると、爆発の危険性があるため避けるべきだということです。

実験例[4]

4-ニトロ-1-ナフチルアミン (3.00 g, 15.9 mmol) をアセトニトリル (50 mL) に溶解 (一部懸濁) し、酢酸アンモニウム (133 mg, 10 mol%) およびN-ブロモスクシンイミド (2.98 g, 16.7 mmol, 1.05 equiv.) を加え室温で10分撹拌する。反応液を減圧下で濃縮し、水を加え酢酸エチルで2回抽出する。有機層を合わせて飽和食塩水で2回洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して黄色固体 4.02 g (収率90%) を得る。

参考文献

[1] Das, B.; Venkateswarlu, K.; Machi, A.; Siddaiah, V., Reddy, K.R., “A facile nuclear bromination of phenols and anilines using NBS in the presence of ammonium acetate as a catalyst”, Journal of Molecular Catalysis A; Chemical, 2007. 267. 30-33. DOI: 10.1016/j.molcata.2006.11.002

[2] Tanemura, K.; Suzuki, T.; nishida, Y.; Satsumabayashi, K.; Hiraguchi, T., “A mild and efficient procedure for α-bromination of ketones using N-bromosuccinimide catalyses by ammonium acetate”, Chemical Communications, 2004, 470-471. DOI: 10.1039/b315340a

[3] 種村潔、有機化合物のハロゲン化反応の開発、日本歯科大学紀要、2019、48、1-4. DOI; 10.14983/00000852/

[4] Yasuda, D.; Nakajima, M.; Yuasa, A.; Obata, R.; Takahashi, K.; Ohe, T.; Ichimura, Y.; Komatsu, M.; Yamamoto, M.; Imamura, R.; Kojima, H.; Okabe, T.; Nagano, T.; Mashino, T., “Synthesis of Keap1-phosphorylated p62 and Keap1-Nrf2 protein-protein interaction inhibitors and their inhibitory activity“, Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5956-5959. DOI: 10.1016/j.bmcl.2016.10.083

関連書籍

臭素およびヨウ素化合物の有機合成 試薬と合成法

臭素およびヨウ素化合物の有機合成 試薬と合成法

鈴木仁美, マナック(株) 研究所
¥10,780(as of 01/28 20:49)
Release date: 2017/01/30
Amazon product information
有機化学1000本ノック反応機構編

有機化学1000本ノック反応機構編

矢野将文
¥2,970(as of 01/28 20:49)
Release date: 2019/08/25
Amazon product information
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 最近の有機化学論文2
  2. 超塩基配位子が助けてくれる!銅触媒による四級炭素の構築
  3. ほぅ、そうか!ハッとするC(sp3)–Hホウ素化
  4. 置き去りのアルドール、launch!
  5. 有機化学実験基礎講座、絶賛公開中!
  6. リチウムにビリリとしびれた芳香環
  7. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)…
  8. 合成小分子と光の力で細胞内蛋白質の局在を自在に操る!

注目情報

ピックアップ記事

  1. Wen-Jing Xiao
  2. 【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-
  3. 雷神にそっくり?ベンゼン環にカミナリ走る
  4. Dead Endを回避せよ!「全合成・極限からの一手」⑦
  5. ReadCubeを使い倒す!(2)~新着論文チェックにもReadCubeをフル活用!~
  6. アデノシン /adenosine
  7. 化学に耳をすませば
  8. 京のX線分析装置、国際標準に  島津製・堀場、EU環境規制で好調
  9. 化学エネルギーを使って自律歩行するゲル
  10. 三井化学、触媒科学賞の受賞者を決定

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年6月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP