[スポンサーリンク]

化学者のつぶやき

ラジカルonボロンでフロンのクロロをロックオン

[スポンサーリンク]

光触媒とアミンボラン錯体を用いた不活性アルケンのヒドロジフルオロメチル化反応が開発された。様々な医薬品に対して簡便にジフルオロメチル基を導入できる。

不活性アルケンのジフルオロメチル化反応

ジフルオロメチル基はヒドロキシ基やチオール、アミンの生物学的等価体であり、かつ生体内で親油性の水素結合ドナーとして働く [1]。これらの特徴から、ジフルオロメチル基の生物活性物質への導入法は数多く開発されている(図1A)。中でもアルケンのヒドロジフルオロメチル化は、アルケンを足がかりにしてジフルオロメチル基を簡便に導入できる手法である。ジフルオロメチル化剤としてジフルオロメタンスルホン酸クロリドやジフルオロメタンスルホン酸塩が用いられるが、いずれも調製に数工程を要する[2]。これらの試薬の原料である、安価なクロロジフルオロメタン(フロン22)を直接ジフルオロメチル化剤として利用できれば、より短工程でジフルオロメチル基の導入が可能になる(注1)。

フロン22をアルケンのヒドロジフルオロメチル化に利用するためには、結合開裂によりラジカルを生成する必要がある。しかしフロン22のハロゲン原子移動(XAT)や水素原子移動(HAT)は、C–Cl結合(約87 kcal/mol)やC–H結合(約100 kcal/mol)の結合解離エネルギー(BDE)の大きさから難易度が高い(図1B)[3]。また、ヒドロジフルオロメチル化に直接利用できるCF2Hラジカルを発生させるためには選択的にXATを起こす必要がある。

今回、本論文の著者らは配位子を有するボリルラジカル(LBR)に着目した(図1C)[4]。配位子によってホウ素上のスピン密度が変化し、反応性を調節できるLBRを用いれば、XATとHATを制御できると期待した。実際に、同著者らはアミンボリルラジカルを用いたXATによりフロン22からCF2Hラジカルを発生させ、不活性アルケンのジフルオロメチル化を達成した(図1D)。

図1. (A) ジフルオロメチル基をもつ医薬品 (B) フロン22の活性化 (C) ボリルラジカルの分類 (D) 今回の反応

 

“Difluoromethylation of Unactivated Alkenes Using Freon-22 through Tertiary Amine-Borane-Triggered Halogen Atom Transfer”

Zhang, Z.-Q.; Sang, Y.-Q.; Wang, C.-Q.; Dai, P.; Xue, X.-S.; Piper, J. L.; Peng, Z.-H.; Ma, J.-A.; Zhang, F.-G.; Wu,  J. Am. Chem. Soc. 2022, 31, 14288–14296.

DOI: 10.1021/jacs.2c05356

論文著者の紹介

研究者:Jun-An Ma (马 军安) (>研究室HP)

研究者の経歴:

1987–1991 B.Sc., Henan University, China
1991–1994 M.Sc., Nankai University, China (Prof. Run-Qiu Huang)
1994–1996 Senior Scientist, Guangzhou Baihua Flavor & Fragrance, China
1996–1999 Ph.D., Nankai University, China (Prof. Run-Qiu Huang)
1999–2002 Assistant & Associate Professor, Nankai University, China (Prof. Qi-Lin Zhou)
2002–2003 Postdoc, CNRS de l’IRCOF Universite de Rouen, France (Prof. Dominique Cahard)
2004–2005 Postdoc, Max-Planck-Institute for Coal Research, Germany (Prof. Manfred T. Reetz)
2005–                             Professor, Tianjin University, China
2008                               Visiting Professor, RIKEN, Japan (Prof. Mikiko Sodeoka)

研究内容:触媒的不斉合成、有機フッ素化学

研究者:Fa-Guang Zhang (张 发光)

研究者の経歴:

2005–2009 B.Sc., Tianjin University, China (Prof. Jun-An Ma)
2009–2014 Ph.D., Tianjin University, China (Prof. Jun-An Ma)
2014–2017 Postdoc, Technion, Israel (Prof. Ilan Marek)
2017–                             Associate Professor, Tianjin University, China (Prof. Jun-An Ma)

研究内容:フッ素化学、歪み環、不斉合成

研究者:Jie Wu (吴 杰) (>研究室HP)

研究者の経歴:
2002–2006 B.Sc., Beijing Normal University, China
2006–2012 Ph.D., Boston University, USA (Prof. James Panek)
2012–2015 Postdoc, MIT, USA (Prof. Timothy Jamison and Prof. Alan Hatton)
2015–2021                  Assistant Professor, National University of Singapore, Singapore
2021–                             Associate Professor, National University of Singapore, Singapore

研究内容:フローケミストリー、光化学

論文の概要

tBuCN中、4CzIPNおよびボラン-トリメチルアミン錯体、ジフェニルジスルフィドを添加し、アルケン1、クロロジフルオロメタン(2)に青色光を照射すると、ジフルオロメチル化体3が得られる(図2A)。本反応はアンチマルコフニコフ型で進行し、優れた位置選択性を示す。また、ヒドロキシ基(1a)、トシル基(1b)、クロロ基(1c)、エステル(1d)、カルボン酸(1e)といった種々の官能基を有するアルケンに適用でき、対応するジフルオロメチル化体(3ae)を高収率で与えた。ホウ素やリンが含まれるアルケンもジフルオロメチル化され、3f3gが得られた。さらに、複雑な骨格を有する医薬分子にも応用可能であり、プレグレノンやシクロプロパン環をもつビオアレトリンに対しても適用でき、それぞれ3h3iを与えた。

次に、著者らはラジカルクロック実験による反応機構解明に取り組んだ(図2B)。b-ピネン(4)を反応させたところ開環体5が収率50%で得られ、本反応がラジカル機構で進行していることが示唆された。また、DFT計算による反応機構解明研究の結果、XATはHATに比べ活性化エネルギーが2.0 kcal/mol低い上、発エルゴン反応であることがわかった(図2C)。

反応機構は次のように提唱されている(図2D)。まず、可視光照射によってジフェニルジスルフィドからチイルラジカルが生成する。続いて、光励起された4CzIPN(PC)がチイルラジカルを一電子還元し、生じたラジカルカチオン(PC•+)とボラン-アミン錯体との一電子移動(SET)が進行することでアミンボリルラジカルが生じる。このアミンボリルラジカルとクロロジフルオロメタン(2)との間でXATが起こり、CF2Hラジカルが発生する。アルケン1に対しCF2Hラジカルが付加した後、チオフェノールから水素原子を引き抜きジフルオロメチル化体3が得られる。

図2. (A) 最適条件と基質適用範囲 (B) ラジカルクロック実験 (C)エネルギーダイアグラム (D) 推定反応機構

 

以上、フロン22をジフルオロメチル化剤とした、不活性アルケンのヒドロジフルオロメチル化反応が開発された。温室効果ガスであるフロン22を用いて医薬品を修飾しており、創薬分野に光を当てる可能性を秘めている(注2)。

注釈

(注1)フロン22はクロロホルムとフッ化水素から調製でき、テフロンなどのフッ素樹脂の原料として利用される。しかし、日本ではオゾン層保護法とフロン排出抑制法により、フロン類の製造、輸出入、大気中への放出が規制されている[5]

(注2)モントリオール議定書により、ヒドロクロロフルオロカーボン類は先進国では2020年、発展途上国では2030年までの全廃が定められている[6]

参考文献

  1. Zafrani, Y.; Sod-Moriah, G.; Yeffet, D.; Berliner, A.; Amir, D.; Marciano, D.; Elias, S.; Katalan, S.; Ashkenazi, N.; Madmon, M.; Gershonov, E.; Saphier, S. CF2H, a Functional Group-Dependent Hydrogen-Bond Donor: Is It a More or Less Lipophilic Bioisostere of OH, SH, and CH3? J. Med. Chem. 2019, 62, 5628−5637. DOI: 10.1021/acs.jmedchem.9b00604
  2. (a)Moore, G. G. I. Fluoroalkanesulfonyl Chlorides. J. Org. Chem. 1979, 44, 1708−1711. DOI: 10.1021/jo01324a027 (b) Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A. From Difluoromethyl 2-Pyridyl Sulfone to Difluorinated Sulfonates: A Protocol for Nucleophilic Difluoro(sulfonato)-methylation. Angew. Chem., Int. Ed. 2011, 50, 2559−2563. DOI: 10.1002/anie.201007594 (c) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. A New Reagent for Direct Difluoromethylation. J. Am. Chem. Soc. 2012, 134, 1494−1497. DOI: 10.1021/ja211422g (d) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R., Jr. Photoredox- Catalyzed Tandem Radical Cyclization of N-Arylacrylamides: General Methods to Construct Fluorinated 3,3-Disubstituted 2-Oxindoles Using Fluoroalkylsulfonyl Chlorides. Org. Lett. 2014, 16, 4594−4597. DOI: 10.1021/ol502163f (e) Chen, X.; Wei, W.; Li, C.; Zhou, H.; Qiao, B.; Jiang, Z. Photoredox- Catalyzed Synthesis of Remote Fluoroalkylated Azaarene Derivatives and the α-Deuterated Analogues via 1,n-Hydrogen-Atom-Transfer- Involving Radical Reactions. Org. Lett. 2021, 23, 8744−8749. DOI: 10.1021/acs.orglett.1c03204
  3. (a) McMillen, D. F.; Golden, D. M. Hydroarbon Bond Dissocation Energies. Annu. Rev. Phys. Chem. 1982, 33, 493−532. DOI: 10.1146/annurev.pc.33.100182.002425 (b) Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies. Chapter Five BDEs of CHalogen Bonds; CRC Press, 2007.
  4. Capaldo, L.; Noël, T.; Ravelli, D. Photocatalytic Generation of Ligated Boryl Radicals from Tertiary Amine-Borane Complexes: An Emerging Tool in Organic Synthesis. Catal. 2022, 2, 957−966. DOI: 10.1016/j.checat.2022.03.005
  5. 経済産業省. “オゾン層保護・温暖化対策”. https://www.meti.go.jp/policy/chemical_management/ozone/index.html, (参照2022-8-30).
  6. 環境省. “モントリオール議定書”. https://www.env.go.jp/earth/ozone/montreal_protocol.html, (参照2022-8-30).

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!
  2. ナイトレン
  3. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…
  4. 有機合成化学協会誌10月号:不飽和脂肪酸代謝産物・フタロシアニン…
  5. Grignard反応剤が一人二役!? 〜有機硫黄化合物を用いる<…
  6. 今年の名古屋メダルセミナーはアツイぞ!
  7. MRS Fall Meeting 2012に来ています
  8. 有機合成化学協会誌2020年8月号:E2212製法・ヘリセン・炭…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「日本研究留学記: オレフィンの内部選択的ヒドロホルミル化触媒」ー東京大学, 野崎研より
  2. Evonikとはどんな会社?
  3. ファンケル、「ツイントース」がイソフラボンの生理活性を高める働きなどと発表
  4. ビス(トリ-o-トリルホスフィン)パラジウム(II) ジクロリド:Bis(tri-o-tolylphosphine)palladium(II) Dichloride
  5. トリテルペノイドの「トリ」!?octanorcucurbitacin Bの全合成
  6. 最新 創薬化学 ~探索研究から開発まで~
  7. クマリンを用いたプロペラ状π共役系発光色素の開発
  8. 思わぬ伏兵・豚インフルエンザ
  9. Brønsted酸触媒とヒドロシランによるシラFriedel-Crafts反応
  10. ノーベル化学賞を受けた企業人たち

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-

第448回のスポットライトリサーチは、東京工業大学 工学院 機械系 機械コース 村上陽一研究室の長 …

毎年恒例のマニアックなスケジュール帳:元素手帳2023

hodaです。去年もケムステで紹介されていた元素手帳2022ですが、2023年バージョンも発…

二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を制御する化学遺伝学センサーの開発 ―

第447回のスポットライトリサーチは、東京大学大学院 理学系研究科化学専攻 生体分子化学研究室(キャ…

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第446回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP