[スポンサーリンク]

スポットライトリサーチ

ありふれた試薬でカルボン酸をエノラート化:カルボン酸の触媒的α-重水素化反応

[スポンサーリンク]

第440回のスポットライトリサーチは、九州大学大学院薬学府(大嶋研究室)に所属されていた田中 津久志 さんにお願いしました。

田中さんは以前のスポットライトリサーチにもご登場いただいており、今回は2回目のご登場となります!前回はカルボン酸のα位の酸化反応についてでしたが、今回ご紹介するのはカルボン酸のα位の重水素化反応についての成果です。医薬品をはじめとした分子の重水素化の利用拡大や重水素化医薬品開発へと期待される本成果は、Nature Synthesis 誌 原著論文およびプレスリリースに公開されています。

Ternary Catalytic α-Deuteration of Carboxylic Acids
Tanaka, T.; Koga, Y.; Honda, Y.; Tsuruta, A.; Matsunaga, N.; Koyanagi, S.; Ohdo, S.; Yazaki, R.; Ohshima, T. Nature Synthesis, 2022, 1, 824–830. DOI: 10.1038/s44160-022-00139-9

研究を指導された矢崎 亮 助教から、田中さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

今回の論文は、田中くんの才能あふれる、田中くんでないと見つけられない内容となっていて、独自のケミストリーを展開してくれました。前回のカルボン酸の酸化反応とは全く異なる触媒系により、カルボン酸を触媒的に活性化することに成功しており、とても美しい触媒系となっています。反応機構としてはきれいだけど、実現するのはなかなか大変そうだなという私の最初の印象でしたが、田中くんの卓越したセンスにより見事に現実のものにしました。カルボン酸を中心にいろいろな検討を行ってくれましたが、そんな反応するのかという発見や、これまで知らなかった現象などたくさん勉強させてもらいながら、面白く研究をすすめることができました。うまくいかず表にでないデータの価値が高いことも田中くんの特徴だと思います。重水素化という新しい展開を切り拓いてくれた田中くんの今後の活躍を期待してやみません。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

今回の研究では、炭酸カリウム、ピバル酸無水物、DMAPという安価な3つの試薬を組み合わせた触媒的なカルボン酸の新規エノラート化機構を開発しました。そして、本触媒系に重水素源を加えることでカルボン酸の触媒的なα-重水素化反応として展開することができました。

カルボン酸は医薬品中に数多く含まれるだけでなく、様々な官能基の前駆体として汎用される重要な構造です。カルボン酸の伝統的な変換反応として、縮合・ヒドリド還元・Curtius転位などが知られています。近年ではカップリング反応におけるアルキルラジカルの前駆体としての利用も広まっており、カルボン酸の合成素子としての有用性はますます高まっています。そのため、α-重水素カルボン酸の効率的な合成法を開発することで、多様な重水素置換化合物が容易に合成可能になると考えました。重水素医薬は2017年に承認されたデューテトラベナジンを皮切りに注目を集めており、重水素を適切な位置に導入することで代謝安定性の向上が期待できます。

通常、カルボン酸をエノラート化しようとすると不安定なジアニオン性エノラートを形成するため、2当量以上の強塩基や高温条件を必要とします。今回の触媒系では酸無水物を経由してアシルピリジニウムを形成し、電荷中性のエノラートを活性中間体とすることで温和な条件でのカルボン酸のエノラート化を達成しました。また、カルボン酸の共役塩基であるカルボキシラート(基質と炭酸カリウムから系中発生)をBrønsted塩基として利用している点もポイントで、これによりカルボン酸の酸性プロトンを完全に中和することなく触媒量の塩基で反応が進行します。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

酸無水物を触媒とするアイデアを着想した瞬間に思い入れがあります。先行研究である鉄とアルカリ金属によるカルボン酸のエノラート化のテーマが終わりを迎える頃、カルボン酸をより効率的にエノラート化する方法を毎日ひたすら考えていました。鉄・アルカリ金属の触媒系では基質適用範囲が比較的エノラート化しやすいα-アリールカルボン酸などに限られており、脂肪族カルボン酸への基質適用範囲拡大が課題となっていました。エノラート化さえしてくれれば重アセトンを用いた条件で軽水素/重水素交換が観測できるところまでは先に分かっていたのですが、問題は重アセトンの沸点以下で脂肪族カルボン酸のエノラート化が全く進行しないところでした。ラボ中の金属触媒を集めてきて、片っ端からスクリーニングしたりもしましたが全然だめでした。既存法のホウ素・DBUの系に魂を売ることも脳裏にチラついていました。そんなとき、ルーティンで何気なく流し見していた新着論文のグラフィックアブストに描かれていた酸無水物の構造が目に入り、パズルのピースがハマりました。当時は金属触媒のことしか頭になかったので、その先入観が打ち砕かれた瞬間の衝撃は未だに忘れられません。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

目的物の精製法を確立するところが難しかったです。今回の反応では精製の過程でα-重水素カルボン酸とピバル酸を分離する必要がありました。エステル化して精製する選択肢もありましたが、α-重水素カルボン酸を含重水素合成素子として利用するためになるべくカルボン酸のまま単離したいと思っていました。

はじめに酸添加カラムや加熱真空乾燥を検討してみましたが、ピバル酸を完全に取り除くことはできませんでした。ネットや本で調べたり人に聞いたりしてみましたが、カルボン酸とカルボン酸を分離する方法なんて見つかりませんでした。途方に暮れていたそんなとき、学部の教科書に載っていたカルボン酸の水素結合による二量体をふと思い出しました。“低沸点のギ酸を添加したら、ギ酸とピバル酸の二量体で飛んでくれるかもしれない”と考え早速試してみると、ピバル酸のにおいとピークがきれいになくなってくれました。

また、余談ですがカルボン酸は5%程度のメタノールを添加した溶媒で意外と簡単にカラム精製できることも分かりました(ミソはメタノール環境で二量体の水素結合が切れ、平衡が単量体側に偏ることだと思っています)。カルボン酸の物性には色々苦労しましたが、最終的にはなんとかカルボン酸とお友達になることができました。

Q4. 将来は化学とどう関わっていきたいですか?

化学で社会に貢献したいと考えています。私は今年の3月に大学院を修了し、現在は製薬企業で創薬研究に取り組んでいます。大学ではどちらかというと自分の興味に従って、半分趣味として研究に取り組んでいました。一方、企業では求められるプロファイルをクリアするような化合物をデザインし、迅速に合成することが求められます。自分にとってはどちらも同じくらい面白いのですが、社会との関わりがより深い点で今は企業での研究にやりがいを感じています。まだまだ未熟ですが、いつか自分のデザインした化合物が世界を少しでも良くする日が来ることを夢見ています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

興味は資源です。研究でも私生活でも、興味のあることは冷める前にやってみて欲しいです。自発的に取り組んだ経験の積み重ねが自信に繋がりますし、どんな経験も意外と無駄にはなりません。研究の世界では独創性が価値を持ちますが、独創性につながる最初の一歩も興味だと思います。大学院生活は決して楽しいことばかりではありません。苦しいこともたくさんあります。しかし、自分の興味に従って自由に研究に取り組むことができる環境はかけがえのないものです。少しでも充実した学生生活を送れるよう、自分の興味を大切にして欲しいです。

最後になりましたが、熱心なご指導に加え自由な研究環境を与えてくださった大嶋先生、森本先生、矢崎先生をはじめとする研究室の皆様、論文の投稿に際し代謝安定性の測定を行ってくださった鶴田先生、松永先生、小柳先生、大戸先生、リバイズを頑張ってくれた古賀くん、本多くんに感謝申し上げます。また、このような貴重な機会をくださったChem-Stationスタッフの方々にも深く感謝いたします。これまで応援してくれた方々の期待に応えられるよう、これからも頑張っていきます!

研究者の略歴

名前:田中 津久志たなか つくし
所属(当時):九州大学大学院薬学府環境調和創薬化学分野
研究テーマ(当時):新規エノラート化機構によるカルボン酸の触媒的α-官能基化反応
略歴:
2017年3月 九州大学薬学部創薬科学科 卒業
2019年3月 九州大学大学院薬学府創薬科学専攻 修士課程 修了
2019年4月 日本学術振興会特別研究員 DC1
2022年3月 九州大学大学院薬学府創薬科学専攻 博士後期課程 修了

 

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. ChemDrawの使い方【作図編②:触媒サイクル】
  2. ペプチドの革新的合成
  3. 単一分子を検出可能な5色の高光度化学発光タンパク質の開発
  4. 未来を切り拓く創薬DX:多角的な視点から探る最新トレンド
  5. Independence Day
  6. 「細胞専用の非水溶媒」という概念を構築
  7. 【22卒就活イベント(東京・大阪)/修士1年 技術系職種志望者対…
  8. 親水性ひも状分子を疎水性空間に取り込むナノカプセル

注目情報

ピックアップ記事

  1. 毒劇アップデート
  2. 資生堂:育毛成分アデノシン配合の発毛促進剤
  3. Mukaiyama Award―受賞者一覧
  4. 世界初!炭素で架橋した“真の”1,3-ビスゲルミレンの合成に成功
  5. 「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学研究所・List研より
  6. 新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次元芳香族性の発現~
  7. HTTPS化とサーバー移転
  8. ヘンリー反応 (ニトロアルドール反応) Henry Reaction (Nitroaldol Reaction)
  9. 光で形を変える結晶
  10. 真鍋良幸 Manabe Yoshiyuki

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP