[スポンサーリンク]

化学者のつぶやき

メソポーラスシリカ(3)

前回(メソポーラスシリカ(2))からの続きです。

Surfactant Templating Methodがもたらした進化はズバリ、FSMが層状シリカをシリカ源とすることと違い、縮合可能なシラノール(Si-OH)もしくはアルコキシシリル(Si-OR)基を持ついかなる化合物でもメソポーラスシリカの前駆体となりうる可能性が拓けたことにあります(※1)。

メソポーラス有機シリカ

というわけでもうお気づきかと思いますが、前回の最後にお見せした


図2. トリエトキシシリル?的なさむしんぐs
という化合物。有機化学をたしなんだことのある人であれば37.5刹那ほどの間に

「あー、檜山カップリングの基質?」

と思う方がほとんどかと思いますが、材料化学の人から見ると(というか筆者の場合)これらは真っ先に有機無機ハイブリッド材料を作る前駆体(precursor)であると認識します。同じ化合物一つでも着想が異なるのは異分野間交流の楽しいところです。(1刹那=1/75秒という説があるそうです。wikipedia)
とりわけ図2の右の分子のようなビスアルコキシシリル(二つのアルコキシシランが有機架橋されたタイプの)化合物有機シリカの壁を構築する前駆体として望ましく、逆に図2の左のようなモノアルコキシシリル化合物は、合成した後のシリカ表面にあるシラノール(Si-OH)基との縮合を利用した表面修飾に利用されることが多いです。
このようなメソポーラス有機シリカ材料の呼び方は研究グループによってマチマチですが、前回紹介したMobilのStucky氏らや豊田中研の稲垣伸二氏ら、この分野の先駆者的研究グループが使っているPMO(Periodic Mesoporous Organosilica、あるいは複数形でPMOsという記述が論文で多々見られます。)という呼称を記事中では使うことにします。

メソスケールの規則性と分子レベルの規則性

有機架橋されたアルコキシシランを用いた最初のPMO合成は、1999年に豊田中研の稲垣らのグループにより報告されたもので、前駆体に1,2-bis(trimethoxysilyl)ethaneを用い、塩基性水溶液中でC18TACl(Octadecyltrimethylammonium chloride)をテンプレートに、縮合時の混合比や温度を変えることで2Dおよび3Dヘキサゴナル構造のPMOを合成しました[1](※2)。このPMOは従来のMCMやFSM同様、規則的なメソ多孔質構造を持っていますが、その壁を構築している有機基の(分子レベルの)構造はアモルファスです。

2002年、またも稲垣らが報告した1,4-bis(triethoxysilyl)benzene(まさしく図2,右の化合物です)を前駆体としたPMOは、それまでのPMOと同様にメソ多孔質構造になっていますが、さらに分子レベルでの規則的構造(つまり結晶構造)も持っています[2]。有機架橋部位の芳香環がface-to-face(π-スタッキング)型の芳香環相互作用(※3)により積み重なっているような構造がシミュレートされ、TEM画像やXRD(X線回折、X-Ray Diffraction、※4)の結果もこの構造を支持する結果となっています(※5)。


関連文献[2]より 新しい単語や概念が盛りだくさんでここまで読むのに疲れてしまった方も多いかもしれませんが(文章のせいでしたらすみませんorz)、これでようやくメソポーラス材料の基礎の基礎といったところです。というわけで、ひとまず基礎編(いま名付けました)はこのくらいにしておいて、後日、応用編として続きをアップしていくつもりです。これまでは専ら有機化学およびITネタと文房具が専門(自分はむしろそういう話を読むのが好きですw)の”化学者のつぶやき”ですが、それら以外の分野のある程度まとまったエントリーも重ねていきたいと勝手に意気込んでいます(きのんさんのこちらのつぶやきもありますし)。
今回の3本の記事は筆者のD論のイントロの一部になる予定の内容を掻い摘んだだけなのですが、応用編まで書き終えて基礎知識を共有し、最新の論文ネタを「共感できる」ようになった(と勝手に筆者が思ったら、もしくはつぶやき内の関連記事を参照することで簡単に補完できるようになった)ら、最新論文ネタも投稿していきたいと考えています。(既に共感どころか筆者よりずっと長く専門でやってきている読者の方もいらっしゃるのでしょうが…)

本文中でばらまいたフラグもとい※の回収

※1. 水と反応して即座に脱水縮合してしまうシラノールやアルコキシシランのワークアップや精製時の扱いにくさ(分液は使えない、シリカゲルカラムも望ましくない)を克服すべく、トリアリル(allyl)シランを用いるPMO合成も報告されています[3]

※2. 前回、前々回で紹介したMCMやFSMは焼成することで界面活性剤を除去しましたが、PMOを焼成してしまうと折角の有機基が分解されてしまいます。よって、大過剰量のエタノールに微量の塩酸を加えたもの(1%と記述されている場合もありますが、筆者の経験的には濃塩酸を適当に一滴垂らせばOK)を用いてソックスレー抽出器(Soxhlet extractor)で洗います。洗い込む時間ですが、数日間という論文もあれば、そもそもソックスレーを使わずにただエタノール中室温で2時間かき混ぜるだけという論文もあり、どの程度厳密に洗い出したいかによるようです。

※3. π共役系の広いナフタレンやアントラセンでは安定にface-to-face型の会合体を作る一方、ベンゼンではedge-to-face型(そのまま積み重なって結晶化するとヘリンボーン/Herringbone型になる)が安定。もっとも上記PMOの場合、ベンゼン部位はシリカ部位に対して垂直ではなく傾いているため、offset型と表現したほうが正しいかもしれません[4]

※4. XRDの原理については省きますが、Bragg反射(2dsinθ=nλ)の式をイメージすると分かりやすいと思います。定数や任意の数をまとめて移項するとdがθの逆数に比例する形になるので、X線の入射角が小さい(薄い)ほど二つの面の間隔が大きな、入射角が大きい(より垂直に近い)ほど間隔の狭いスペクトルに対応します。メソポーラス材料の場合、入射角θ=5o(∴2θ=10o)未満にメソ構造由来のピークが見られ、さらに5o<θ<25o付近にピークがあれば分子レベル(オングストローム(A)サイズ)の規則性をもっているとわかります。

※5. 1999年のCorriuらによる報告で、メソポーラスでない有機シリカ材料における分子レベルの規則的配列(結晶化)が示唆されています[5]

関連文献

  1. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611. DOI: 10.1021/ja9916658
  2. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasak, O. Nature 2002, 416, 304. DOI:10.1038/416304a
  3. (a) Shimada, T.; Aoki, K.; Shinoda, Y.; Nakamura, T.; Tokunaga, N.; Inagaki, S.; Hayashi, T. J. Am. Chem. Soc. 2003, 125, 4688. DOI: 10.1021/ja034691l (b) Aoki, K.; Shimada, T.; Hayashi, T. Tetrahedron: Asymmetry 2004, 15, 1771. DOI: 10.1016/j.tetasy.2004.03.044 (c) Kapoor, M. P.; Inagaki, S.; Ikeda, S.; Kakiuchi, K.; Suda, M.; Shimada, T. J. Am. Chem. Soc. 2005, 127, 8174. DOI: 10.1021/ja043062o
  4. 小林啓二、林直人著、『固体有機化学』、化学同人(2009).
  5. Boury, B.; Corriu, R. J. P.; Le Strat, V.; Delord, P.; Nobili, M. Angew. Chem., Int. Ed. 1999, 38, 3172. DOI: 10.1002/(SICI)1521-3773(19991102)38:21<3172::AID-ANIE3172>3.0.CO;2-3
  6. レビュー論文  (a) Wan, Y.; Zhao, D. Chem. Rev., 2007, 107, 2821. DOI: 10.1021/cr068020s (b)Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891. DOI: 10.1021/cm702271v

 

関連書籍

 

The following two tabs change content below.
せきとも

せきとも

他人のお金で海外旅行もとい留学を重ね、現在カナダの某五大湖畔で院生。かつては専ら有機化学がテーマであったが、現在は有機無機ハイブリッドのシリカ材料を扱いつつ、高分子化学に

関連記事

  1. 触媒なの? ?自殺する酵素?
  2. 有機アジド(3):アジド導入反応剤
  3. アルケンの実用的ペルフルオロアルキル化反応の開発
  4. ネオ元素周期表
  5. 原子のシート間にはたらく相互作用の観測に成功
  6. 一流の化学雑誌をいかにしてつくるか?
  7. 分子振動と協奏する超高速励起子分裂現象の解明
  8. カスケード反応で難関天然物をまとめて攻略!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  2. 3日やったらやめられない:独自配位子開発と応用
  3. 臭素系難燃剤など8種を禁止 有害化学物質の規制条約
  4. bothの使い方
  5. 【書籍】化学探偵Mr. キュリー
  6. ネオ元素周期表
  7. Amazonを上手く使って書籍代を節約する方法
  8. ケムステ版・ノーベル化学賞候補者リスト【2017年版】
  9. アゾ化合物シストランス光異性化
  10. 生物に打ち勝つ人工合成?アルカロイド骨格多様化合成法の開発

関連商品

注目情報

注目情報

最新記事

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

研究職の転職で求められる「面白い人材」

ある外資系機器メーカーのフィールドサービス職のポジションに対して候補者をご推薦しました。その時のエピ…

Chem-Station Twitter

PAGE TOP