[スポンサーリンク]

化学者のつぶやき

メソポーラスシリカ(3)

[スポンサーリンク]

前回(メソポーラスシリカ(2))からの続きです。

Surfactant Templating Methodがもたらした進化はズバリ、FSMが層状シリカをシリカ源とすることと違い、縮合可能なシラノール(Si-OH)もしくはアルコキシシリル(Si-OR)基を持ついかなる化合物でもメソポーラスシリカの前駆体となりうる可能性が拓けたことにあります(※1)。

メソポーラス有機シリカ

というわけでもうお気づきかと思いますが、前回の最後にお見せした


図2. トリエトキシシリル?的なさむしんぐs
という化合物。有機化学をたしなんだことのある人であれば37.5刹那ほどの間に

「あー、檜山カップリングの基質?」

と思う方がほとんどかと思いますが、材料化学の人から見ると(というか筆者の場合)これらは真っ先に有機無機ハイブリッド材料を作る前駆体(precursor)であると認識します。同じ化合物一つでも着想が異なるのは異分野間交流の楽しいところです。(1刹那=1/75秒という説があるそうです。wikipedia)
とりわけ図2の右の分子のようなビスアルコキシシリル(二つのアルコキシシランが有機架橋されたタイプの)化合物有機シリカの壁を構築する前駆体として望ましく、逆に図2の左のようなモノアルコキシシリル化合物は、合成した後のシリカ表面にあるシラノール(Si-OH)基との縮合を利用した表面修飾に利用されることが多いです。
このようなメソポーラス有機シリカ材料の呼び方は研究グループによってマチマチですが、前回紹介したMobilのStucky氏らや豊田中研の稲垣伸二氏ら、この分野の先駆者的研究グループが使っているPMO(Periodic Mesoporous Organosilica、あるいは複数形でPMOsという記述が論文で多々見られます。)という呼称を記事中では使うことにします。

メソスケールの規則性と分子レベルの規則性

有機架橋されたアルコキシシランを用いた最初のPMO合成は、1999年に豊田中研の稲垣らのグループにより報告されたもので、前駆体に1,2-bis(trimethoxysilyl)ethaneを用い、塩基性水溶液中でC18TACl(Octadecyltrimethylammonium chloride)をテンプレートに、縮合時の混合比や温度を変えることで2Dおよび3Dヘキサゴナル構造のPMOを合成しました[1](※2)。このPMOは従来のMCMやFSM同様、規則的なメソ多孔質構造を持っていますが、その壁を構築している有機基の(分子レベルの)構造はアモルファスです。

2002年、またも稲垣らが報告した1,4-bis(triethoxysilyl)benzene(まさしく図2,右の化合物です)を前駆体としたPMOは、それまでのPMOと同様にメソ多孔質構造になっていますが、さらに分子レベルでの規則的構造(つまり結晶構造)も持っています[2]。有機架橋部位の芳香環がface-to-face(π-スタッキング)型の芳香環相互作用(※3)により積み重なっているような構造がシミュレートされ、TEM画像やXRD(X線回折、X-Ray Diffraction、※4)の結果もこの構造を支持する結果となっています(※5)。


関連文献[2]より 新しい単語や概念が盛りだくさんでここまで読むのに疲れてしまった方も多いかもしれませんが(文章のせいでしたらすみませんorz)、これでようやくメソポーラス材料の基礎の基礎といったところです。というわけで、ひとまず基礎編(いま名付けました)はこのくらいにしておいて、後日、応用編として続きをアップしていくつもりです。これまでは専ら有機化学およびITネタと文房具が専門(自分はむしろそういう話を読むのが好きですw)の”化学者のつぶやき”ですが、それら以外の分野のある程度まとまったエントリーも重ねていきたいと勝手に意気込んでいます(きのんさんのこちらのつぶやきもありますし)。
今回の3本の記事は筆者のD論のイントロの一部になる予定の内容を掻い摘んだだけなのですが、応用編まで書き終えて基礎知識を共有し、最新の論文ネタを「共感できる」ようになった(と勝手に筆者が思ったら、もしくはつぶやき内の関連記事を参照することで簡単に補完できるようになった)ら、最新論文ネタも投稿していきたいと考えています。(既に共感どころか筆者よりずっと長く専門でやってきている読者の方もいらっしゃるのでしょうが…)

本文中でばらまいたフラグもとい※の回収

※1. 水と反応して即座に脱水縮合してしまうシラノールやアルコキシシランのワークアップや精製時の扱いにくさ(分液は使えない、シリカゲルカラムも望ましくない)を克服すべく、トリアリル(allyl)シランを用いるPMO合成も報告されています[3]

※2. 前回、前々回で紹介したMCMやFSMは焼成することで界面活性剤を除去しましたが、PMOを焼成してしまうと折角の有機基が分解されてしまいます。よって、大過剰量のエタノールに微量の塩酸を加えたもの(1%と記述されている場合もありますが、筆者の経験的には濃塩酸を適当に一滴垂らせばOK)を用いてソックスレー抽出器(Soxhlet extractor)で洗います。洗い込む時間ですが、数日間という論文もあれば、そもそもソックスレーを使わずにただエタノール中室温で2時間かき混ぜるだけという論文もあり、どの程度厳密に洗い出したいかによるようです。

※3. π共役系の広いナフタレンやアントラセンでは安定にface-to-face型の会合体を作る一方、ベンゼンではedge-to-face型(そのまま積み重なって結晶化するとヘリンボーン/Herringbone型になる)が安定。もっとも上記PMOの場合、ベンゼン部位はシリカ部位に対して垂直ではなく傾いているため、offset型と表現したほうが正しいかもしれません[4]

※4. XRDの原理については省きますが、Bragg反射(2dsinθ=nλ)の式をイメージすると分かりやすいと思います。定数や任意の数をまとめて移項するとdがθの逆数に比例する形になるので、X線の入射角が小さい(薄い)ほど二つの面の間隔が大きな、入射角が大きい(より垂直に近い)ほど間隔の狭いスペクトルに対応します。メソポーラス材料の場合、入射角θ=5o(∴2θ=10o)未満にメソ構造由来のピークが見られ、さらに5o<θ<25o付近にピークがあれば分子レベル(オングストローム(A)サイズ)の規則性をもっているとわかります。

※5. 1999年のCorriuらによる報告で、メソポーラスでない有機シリカ材料における分子レベルの規則的配列(結晶化)が示唆されています[5]

関連文献

  1. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611. DOI: 10.1021/ja9916658
  2. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasak, O. Nature 2002, 416, 304. DOI:10.1038/416304a
  3. (a) Shimada, T.; Aoki, K.; Shinoda, Y.; Nakamura, T.; Tokunaga, N.; Inagaki, S.; Hayashi, T. J. Am. Chem. Soc. 2003, 125, 4688. DOI: 10.1021/ja034691l (b) Aoki, K.; Shimada, T.; Hayashi, T. Tetrahedron: Asymmetry 2004, 15, 1771. DOI: 10.1016/j.tetasy.2004.03.044 (c) Kapoor, M. P.; Inagaki, S.; Ikeda, S.; Kakiuchi, K.; Suda, M.; Shimada, T. J. Am. Chem. Soc. 2005, 127, 8174. DOI: 10.1021/ja043062o
  4. 小林啓二、林直人著、『固体有機化学』、化学同人(2009).
  5. Boury, B.; Corriu, R. J. P.; Le Strat, V.; Delord, P.; Nobili, M. Angew. Chem., Int. Ed. 1999, 38, 3172. DOI: 10.1002/(SICI)1521-3773(19991102)38:21<3172::AID-ANIE3172>3.0.CO;2-3
  6. レビュー論文  (a) Wan, Y.; Zhao, D. Chem. Rev., 2007, 107, 2821. DOI: 10.1021/cr068020s (b)Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891. DOI: 10.1021/cm702271v

 

関連書籍

[amazonjs asin=”4759811435″ locale=”JP” title=”固体有機化学”][amazonjs asin=”4781301894″ locale=”JP” title=”ナノサイエンスが作る多孔性材料 (CMCテクニカルライブラリー―新材料・新素材シリーズ)”]

 

Avatar photo

せきとも

投稿者の記事一覧

他人のお金で海外旅行もとい留学を重ね、現在カナダの某五大湖畔で院生。かつては専ら有機化学がテーマであったが、現在は有機無機ハイブリッドのシリカ材料を扱いつつ、高分子化学に

関連記事

  1. 論文引用ランキングから見る、化学界の世界的潮流
  2. Inpriaとは? ~フォトレジスト業界の重要トピック~
  3. クリック反応を用いて、機能性分子を持つイナミド類を自在合成!
  4. 有機化学美術館が来てくれました
  5. 化学の祭典!国際化学オリンピック ”53rd IChO 2021…
  6. スタニルリチウム調製の新手法
  7. 学生実験・いまむかし
  8. ルイス塩基触媒によるボロン酸の活性化:可視光レドックス触媒系への…

注目情報

ピックアップ記事

  1. 製薬会社5年後の行方
  2. 光触媒で新型肺炎を防止  ノリタケが実証
  3. 有機合成化学協会誌2018年12月号:シアリダーゼ・Brook転位・末端選択的酸化・キサンテン・ヨウ素反応剤・ニッケル触媒・Edoxaban中間体・逆電子要請型[4+2]環化付加
  4. Cell Pressが化学のジャーナルを出版
  5. [5+1]環化戦略による触媒的置換シクロヘキサン合成
  6. 第64回―「ホウ素を含むポルフィリン・コロール錯体の研究」Penny Brothers教授
  7. 薬剤師国家試験にチャレンジ!【有機化学編その1】
  8. コーリー・ギルマン・ガネム酸化 Corey-Gilman-Ganem Oxidation
  9. イベルメクチン /Ivermectin
  10. カフェインの覚醒効果を分子レベルで立証

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP