[スポンサーリンク]

化学者のつぶやき

メソポーラスシリカ(3)

[スポンサーリンク]

前回(メソポーラスシリカ(2))からの続きです。

Surfactant Templating Methodがもたらした進化はズバリ、FSMが層状シリカをシリカ源とすることと違い、縮合可能なシラノール(Si-OH)もしくはアルコキシシリル(Si-OR)基を持ついかなる化合物でもメソポーラスシリカの前駆体となりうる可能性が拓けたことにあります(※1)。

メソポーラス有機シリカ

というわけでもうお気づきかと思いますが、前回の最後にお見せした


図2. トリエトキシシリル?的なさむしんぐs
という化合物。有機化学をたしなんだことのある人であれば37.5刹那ほどの間に

「あー、檜山カップリングの基質?」

と思う方がほとんどかと思いますが、材料化学の人から見ると(というか筆者の場合)これらは真っ先に有機無機ハイブリッド材料を作る前駆体(precursor)であると認識します。同じ化合物一つでも着想が異なるのは異分野間交流の楽しいところです。(1刹那=1/75秒という説があるそうです。wikipedia)
とりわけ図2の右の分子のようなビスアルコキシシリル(二つのアルコキシシランが有機架橋されたタイプの)化合物有機シリカの壁を構築する前駆体として望ましく、逆に図2の左のようなモノアルコキシシリル化合物は、合成した後のシリカ表面にあるシラノール(Si-OH)基との縮合を利用した表面修飾に利用されることが多いです。
このようなメソポーラス有機シリカ材料の呼び方は研究グループによってマチマチですが、前回紹介したMobilのStucky氏らや豊田中研の稲垣伸二氏ら、この分野の先駆者的研究グループが使っているPMO(Periodic Mesoporous Organosilica、あるいは複数形でPMOsという記述が論文で多々見られます。)という呼称を記事中では使うことにします。

メソスケールの規則性と分子レベルの規則性

有機架橋されたアルコキシシランを用いた最初のPMO合成は、1999年に豊田中研の稲垣らのグループにより報告されたもので、前駆体に1,2-bis(trimethoxysilyl)ethaneを用い、塩基性水溶液中でC18TACl(Octadecyltrimethylammonium chloride)をテンプレートに、縮合時の混合比や温度を変えることで2Dおよび3Dヘキサゴナル構造のPMOを合成しました[1](※2)。このPMOは従来のMCMやFSM同様、規則的なメソ多孔質構造を持っていますが、その壁を構築している有機基の(分子レベルの)構造はアモルファスです。

2002年、またも稲垣らが報告した1,4-bis(triethoxysilyl)benzene(まさしく図2,右の化合物です)を前駆体としたPMOは、それまでのPMOと同様にメソ多孔質構造になっていますが、さらに分子レベルでの規則的構造(つまり結晶構造)も持っています[2]。有機架橋部位の芳香環がface-to-face(π-スタッキング)型の芳香環相互作用(※3)により積み重なっているような構造がシミュレートされ、TEM画像やXRD(X線回折、X-Ray Diffraction、※4)の結果もこの構造を支持する結果となっています(※5)。


関連文献[2]より 新しい単語や概念が盛りだくさんでここまで読むのに疲れてしまった方も多いかもしれませんが(文章のせいでしたらすみませんorz)、これでようやくメソポーラス材料の基礎の基礎といったところです。というわけで、ひとまず基礎編(いま名付けました)はこのくらいにしておいて、後日、応用編として続きをアップしていくつもりです。これまでは専ら有機化学およびITネタと文房具が専門(自分はむしろそういう話を読むのが好きですw)の”化学者のつぶやき”ですが、それら以外の分野のある程度まとまったエントリーも重ねていきたいと勝手に意気込んでいます(きのんさんのこちらのつぶやきもありますし)。
今回の3本の記事は筆者のD論のイントロの一部になる予定の内容を掻い摘んだだけなのですが、応用編まで書き終えて基礎知識を共有し、最新の論文ネタを「共感できる」ようになった(と勝手に筆者が思ったら、もしくはつぶやき内の関連記事を参照することで簡単に補完できるようになった)ら、最新論文ネタも投稿していきたいと考えています。(既に共感どころか筆者よりずっと長く専門でやってきている読者の方もいらっしゃるのでしょうが…)

本文中でばらまいたフラグもとい※の回収

※1. 水と反応して即座に脱水縮合してしまうシラノールやアルコキシシランのワークアップや精製時の扱いにくさ(分液は使えない、シリカゲルカラムも望ましくない)を克服すべく、トリアリル(allyl)シランを用いるPMO合成も報告されています[3]

※2. 前回、前々回で紹介したMCMやFSMは焼成することで界面活性剤を除去しましたが、PMOを焼成してしまうと折角の有機基が分解されてしまいます。よって、大過剰量のエタノールに微量の塩酸を加えたもの(1%と記述されている場合もありますが、筆者の経験的には濃塩酸を適当に一滴垂らせばOK)を用いてソックスレー抽出器(Soxhlet extractor)で洗います。洗い込む時間ですが、数日間という論文もあれば、そもそもソックスレーを使わずにただエタノール中室温で2時間かき混ぜるだけという論文もあり、どの程度厳密に洗い出したいかによるようです。

※3. π共役系の広いナフタレンやアントラセンでは安定にface-to-face型の会合体を作る一方、ベンゼンではedge-to-face型(そのまま積み重なって結晶化するとヘリンボーン/Herringbone型になる)が安定。もっとも上記PMOの場合、ベンゼン部位はシリカ部位に対して垂直ではなく傾いているため、offset型と表現したほうが正しいかもしれません[4]

※4. XRDの原理については省きますが、Bragg反射(2dsinθ=nλ)の式をイメージすると分かりやすいと思います。定数や任意の数をまとめて移項するとdがθの逆数に比例する形になるので、X線の入射角が小さい(薄い)ほど二つの面の間隔が大きな、入射角が大きい(より垂直に近い)ほど間隔の狭いスペクトルに対応します。メソポーラス材料の場合、入射角θ=5o(∴2θ=10o)未満にメソ構造由来のピークが見られ、さらに5o<θ<25o付近にピークがあれば分子レベル(オングストローム(A)サイズ)の規則性をもっているとわかります。

※5. 1999年のCorriuらによる報告で、メソポーラスでない有機シリカ材料における分子レベルの規則的配列(結晶化)が示唆されています[5]

関連文献

  1. Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611. DOI: 10.1021/ja9916658
  2. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasak, O. Nature 2002, 416, 304. DOI:10.1038/416304a
  3. (a) Shimada, T.; Aoki, K.; Shinoda, Y.; Nakamura, T.; Tokunaga, N.; Inagaki, S.; Hayashi, T. J. Am. Chem. Soc. 2003, 125, 4688. DOI: 10.1021/ja034691l (b) Aoki, K.; Shimada, T.; Hayashi, T. Tetrahedron: Asymmetry 2004, 15, 1771. DOI: 10.1016/j.tetasy.2004.03.044 (c) Kapoor, M. P.; Inagaki, S.; Ikeda, S.; Kakiuchi, K.; Suda, M.; Shimada, T. J. Am. Chem. Soc. 2005, 127, 8174. DOI: 10.1021/ja043062o
  4. 小林啓二、林直人著、『固体有機化学』、化学同人(2009).
  5. Boury, B.; Corriu, R. J. P.; Le Strat, V.; Delord, P.; Nobili, M. Angew. Chem., Int. Ed. 1999, 38, 3172. DOI: 10.1002/(SICI)1521-3773(19991102)38:21<3172::AID-ANIE3172>3.0.CO;2-3
  6. レビュー論文  (a) Wan, Y.; Zhao, D. Chem. Rev., 2007, 107, 2821. DOI: 10.1021/cr068020s (b)Fujita, S.; Inagaki, S. Chem. Mater. 2008, 20, 891. DOI: 10.1021/cm702271v

 

関連書籍

 

せきとも

せきとも

投稿者の記事一覧

他人のお金で海外旅行もとい留学を重ね、現在カナダの某五大湖畔で院生。かつては専ら有機化学がテーマであったが、現在は有機無機ハイブリッドのシリカ材料を扱いつつ、高分子化学に

関連記事

  1. 斬新な官能基変換を可能にするパラジウム触媒
  2. イオン性置換基を有するホスホール化合物の発光特性
  3. 新風を巻き起こそう!ロレアル-ユネスコ女性科学者日本奨励賞201…
  4. 美麗な元素のおもちゃ箱を貴方に―『世界で一番美しい元素図鑑』
  5. シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系
  6. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)…
  7. アノマー効果を説明できますか?
  8. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 海底にレアアース資源!ランタノイドは太平洋の夢を見るか
  2. 在宅となった化学者がすべきこと
  3. Classics in Total Synthesis
  4. アノードカップリングにより完遂したテバインの不斉全合成
  5. 次なる新興感染症に備える
  6. 2012年Wolf化学賞はナノケミストリーのLieber博士,Alivisatos博士に!
  7. 子供と一緒にネットで化学実験を楽しもう!
  8. 核酸医薬の物語2「アンチセンス核酸とRNA干渉薬」
  9. アニオンUV硬化に有用な光塩基発生剤(PBG)
  10. イオン交換が分子間電荷移動を駆動する協奏的現象の発見

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

吉岡里帆さん演じる「化学大好きDIC岡里帆(ディーアイシーおか・りほ)」シリーズ、第2弾公開!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2021年1月より、数々のヒット作に出演し、…

第14回ケムステVシンポ「スーパー超分子ワールド」を開催します!

ケムステーションをご覧の方々、あけましておめでとうございます。本年もどうぞよろしくお願い申し上げます…

【日産化学】新卒採用情報(2022卒)

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン R2

詳細・お申込みはこちら日時令和3年 2月18日、25日(木) 基礎編        …

化学者のためのエレクトロニクス講座~電解で起こる現象編~

化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロ…

機械学習により超合金粉末の製造コスト削減に成功

NIMSは、機械学習を適用することで、航空機エンジン用材料として有望なNi-Co基超合金の高性能・高…

実験白衣を10種類試してみた

化学実験関連商品紹介動画シリーズ第二弾です。前回は実験メガネを紹介しました。今回は実験メガネ…

健康的なPC作業環境のすすめ

快適なPC作業環境をサポートするツールと言えば、マルチディスプレイやノイズキャンセリングヘッドホン、…

Chem-Station Twitter

PAGE TOP