[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~次世代の通信技術編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は次世代の無線通信の可能性を探ります。

ポスト5Gはミリ波・サブミリ波帯?(画像:Wikipedia

直観にも反しないかとは思いますが、一般に通信に用いる電波の周波数が高いほど、特殊な変調方式を用いずとも高速・大容量での通信が可能となります。

無線通信は長波(LF 30-300 kHz)から中波(MF 0.3-3 MHz)、短波(HF 3-30 MHz)、超短波(VHF 30-300 MHz)と時代を下るごとに高周波化してきましたが、2020年現在開発されている5Gまでの通信に利用される目途が立っているのはマイクロ波のうち極超短波(UHF 0.3-3 GHzセンチメートル波(SHF 3-30 GHzです。

ミリ波・サブミリ波とその特性

これらよりも高い周波数の帯域には、ミリ波(EHF 30-300 GHzサブミリ波(0.3-3 THzがあり、これよりも短波長になると遠赤外線に分類されるようになります。

この領域においては、波長が短くなるにつれて回折しにくくなり直進性が増すとともに、大気中の水蒸気などによる吸収も無視できなくなります。

マイクロ波帯の大気透過率(画像:Wikipedia

なお、電磁波のうち大気による吸収を受けない波長域を大気の窓と呼びます。地球大気は電波と可視光線以外に対しては透明ではないため、これら以外の波長(赤外線・紫外線の大半、X線、ガンマ線)は長距離の通信には不向きとされています(赤外領域になると再び透過率の高い波長域が現れます)。そのため、やみくもに高周波帯域を利用すればよいというわけでもありません。

赤外領域における大気の窓(画像:Wikipedia

このため、5G通信に用いる28 GHz帯程度のマイクロ波の領域においても、直進性が大きく吸収減衰が大きいために、無数の送受信機器を設置することが必要となります。今後さらに短波長の帯域が用いられるようになれば、この傾向は一層顕著となります。とはいえ、IoT化の進展によりそこかしこに送受信機能を備えた端末が配備されるのであれば深刻な問題にはならないかもしれません。電波の送受信に必要なアンテナは、短波長ほど小型化できることから、装置全体の小型化に利することもミリ波・サブミリ波帯無線通信の長所です。

IoT化を担う合成石英ガラスアンテナ(画像提供:AGC

ミリ波・サブミリ波の発振

これらの帯域の利用にあたってもう一点課題となるのが、いかに小型な装置で簡便に発信・検出を行うかという問題です。従来はこれらの帯域の発振と検出には超伝導素子を用いるほかありませんでしたが、これは大型で極低温を要するため実用的ではありませんでした。そこでミリ波とサブミリ波の半導体発振器が長年求められており、近年では窒化ガリウムGaNのような化合物半導体の発展により実用化の目途が立ちつつあります。

代表的な素子としては、共鳴トンネルダイオード真空チャネルトランジスタが有力視されています。前者は複数の薄い化合物半導体を層状に積み上げたもので、特定の印加電圧の範囲で負性抵抗を示すことから発振に用いることができます[1]。

一方後者はソース・ドレイン間に150 nmほどの真空ギャップを設けることで物理的な接触なしにゲート間に電子が流れるもので、真空管を微細化したような構造です。高速応答が可能であるため高周波用途への応用が嘱望されます。

また、有機合成化学における脱酸素化フッ素化剤として名高い三フッ化N,N-ジエチルアミノ硫黄(DASTによる非線形光学効果による室温での発振も報告されているなど、有機材料の応用も期待されます(有機合成におけるDASTの利用については過去記事をご参照ください)。

三フッ化N,N-ジエチルアミノ硫黄(DAST)

世間ではようやく5G通信の商用化が本格的に始まったばかりであり、技術的問題をようやくクリアできても普及には忌避感が強い[2]など、その前途は多難といっても過言ではありません。

しかしながら、これらの技術革新は将来的には需要が極めて高く、いずれは人類が直面するものです。その実現には物理系・電子系の技術者のみならず、優れた特性を示す材料を提供する化学系研究者の存在が不可欠であります。

昨今の有機材料研究はOLED(有機EL)向けのTADF材料やOFET向けの有機半導体材料にやや傾斜している感もありますが、幅広い用途を見据えて多角的に研究が進展し、遠からず「ポスト5G」の時代が訪れることを願います。

関連リンク

[1] 高精度半導体結晶成長制御技術による 共鳴トンネルダイオードテラヘルツ発振器の実現 NTT技術ジャーナル, 2011, 7, 12-15.

[2] 欧州5G基地局破壊、影の犯人は「コロナ拡散」のデマ(日本経済新聞 2020 4/25)

特集:移動体通信用部品技術 テラヘルツ帯無線通信の技術(ローム社)

関連書籍

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. ペプチドの革新的合成
  2. 分子内架橋ポリマーを触媒ナノリアクターへ応用する
  3. タミフルの新規合成法・その3
  4. ポンコツ博士の海外奮闘録⑤ 〜博士,アメ飯を食す。バーガー編〜
  5. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~…
  6. アニリン版クメン法
  7. 研究者×Sigma-Aldrichコラボ試薬 のポータルサイト
  8. 液相における粒子間水素移動によって加速されるアルカンとベンゼンの…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 秋田英万 Akita Hidetaka
  2. 触媒のチカラで不可能を可能に?二連続不斉四級炭素構築法の開発
  3. 自動車用燃料、「脱石油」競う 商社、天然ガス・バイオマス活用
  4. 「抗炎症」と「抗酸化」組み合わせ脱毛抑制効果を増強
  5. すごい分子 世界は六角形でできている
  6. Reaxys無料トライアル実施中!
  7. 武田薬、糖尿病治療剤「アクトス」の効能を追加申請
  8. 1,2-還元と1,4-還元
  9. NIMSの「新しいウェブサイト」が熱い!
  10. ケムステV年末ライブ2021開催報告! 〜今年の分子 and 人気記事 Top 10〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP