[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~次世代の通信技術編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は次世代の無線通信の可能性を探ります。

ポスト5Gはミリ波・サブミリ波帯?(画像:Wikipedia

直観にも反しないかとは思いますが、一般に通信に用いる電波の周波数が高いほど、特殊な変調方式を用いずとも高速・大容量での通信が可能となります。

無線通信は長波(LF 30-300 kHz)から中波(MF 0.3-3 MHz)、短波(HF 3-30 MHz)、超短波(VHF 30-300 MHz)と時代を下るごとに高周波化してきましたが、2020年現在開発されている5Gまでの通信に利用される目途が立っているのはマイクロ波のうち極超短波(UHF 0.3-3 GHzセンチメートル波(SHF 3-30 GHzです。

ミリ波・サブミリ波とその特性

これらよりも高い周波数の帯域には、ミリ波(EHF 30-300 GHzサブミリ波(0.3-3 THzがあり、これよりも短波長になると遠赤外線に分類されるようになります。

この領域においては、波長が短くなるにつれて回折しにくくなり直進性が増すとともに、大気中の水蒸気などによる吸収も無視できなくなります。

マイクロ波帯の大気透過率(画像:Wikipedia

なお、電磁波のうち大気による吸収を受けない波長域を大気の窓と呼びます。地球大気は電波と可視光線以外に対しては透明ではないため、これら以外の波長(赤外線・紫外線の大半、X線、ガンマ線)は長距離の通信には不向きとされています(赤外領域になると再び透過率の高い波長域が現れます)。そのため、やみくもに高周波帯域を利用すればよいというわけでもありません。

赤外領域における大気の窓(画像:Wikipedia

このため、5G通信に用いる28 GHz帯程度のマイクロ波の領域においても、直進性が大きく吸収減衰が大きいために、無数の送受信機器を設置することが必要となります。今後さらに短波長の帯域が用いられるようになれば、この傾向は一層顕著となります。とはいえ、IoT化の進展によりそこかしこに送受信機能を備えた端末が配備されるのであれば深刻な問題にはならないかもしれません。電波の送受信に必要なアンテナは、短波長ほど小型化できることから、装置全体の小型化に利することもミリ波・サブミリ波帯無線通信の長所です。

IoT化を担う合成石英ガラスアンテナ(画像提供:AGC

ミリ波・サブミリ波の発振

これらの帯域の利用にあたってもう一点課題となるのが、いかに小型な装置で簡便に発信・検出を行うかという問題です。従来はこれらの帯域の発振と検出には超伝導素子を用いるほかありませんでしたが、これは大型で極低温を要するため実用的ではありませんでした。そこでミリ波とサブミリ波の半導体発振器が長年求められており、近年では窒化ガリウムGaNのような化合物半導体の発展により実用化の目途が立ちつつあります。

代表的な素子としては、共鳴トンネルダイオード真空チャネルトランジスタが有力視されています。前者は複数の薄い化合物半導体を層状に積み上げたもので、特定の印加電圧の範囲で負性抵抗を示すことから発振に用いることができます[1]。

一方後者はソース・ドレイン間に150 nmほどの真空ギャップを設けることで物理的な接触なしにゲート間に電子が流れるもので、真空管を微細化したような構造です。高速応答が可能であるため高周波用途への応用が嘱望されます。

また、有機合成化学における脱酸素化フッ素化剤として名高い三フッ化N,N-ジエチルアミノ硫黄(DASTによる非線形光学効果による室温での発振も報告されているなど、有機材料の応用も期待されます(有機合成におけるDASTの利用については過去記事をご参照ください)。

三フッ化N,N-ジエチルアミノ硫黄(DAST)

世間ではようやく5G通信の商用化が本格的に始まったばかりであり、技術的問題をようやくクリアできても普及には忌避感が強い[2]など、その前途は多難といっても過言ではありません。

しかしながら、これらの技術革新は将来的には需要が極めて高く、いずれは人類が直面するものです。その実現には物理系・電子系の技術者のみならず、優れた特性を示す材料を提供する化学系研究者の存在が不可欠であります。

昨今の有機材料研究はOLED(有機EL)向けのTADF材料やOFET向けの有機半導体材料にやや傾斜している感もありますが、幅広い用途を見据えて多角的に研究が進展し、遠からず「ポスト5G」の時代が訪れることを願います。

関連リンク

[1] 高精度半導体結晶成長制御技術による 共鳴トンネルダイオードテラヘルツ発振器の実現 NTT技術ジャーナル, 2011, 7, 12-15.

[2] 欧州5G基地局破壊、影の犯人は「コロナ拡散」のデマ(日本経済新聞 2020 4/25)

特集:移動体通信用部品技術 テラヘルツ帯無線通信の技術(ローム社)

関連書籍

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…
  2. ケイ素半導体加工に使えるイガイな接着剤
  3. 酵素発現領域を染め分ける高感度ラマンプローブの開発
  4. スターバースト型分子、ヘキサアリールベンゼン合成の新手法
  5. アンモニアを用いた環境調和型2級アミド合成
  6. 高効率・高正確な人工核酸ポリメラーゼの開発
  7. 博士課程と給料
  8. 不溶性アリールハライドの固体クロスカップリング反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 巨大ポリエーテル天然物「ギムノシン-A」の全合成
  2. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  3. 企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介
  4. 先制医療 -実現のための医学研究-
  5. 堂々たる夢 世界に日本人を認めさせた化学者・高峰譲吉の生涯
  6. 富士写、化学材料を事業化
  7. 人工細胞膜上で機能するDNAナノデバイスの新たな精製方法を確立
  8. 定量PCR(qPCR ; quantitative PCR)、リアルタイムPCR
  9. プロテオミクス現場の小話(1)前処理環境のご紹介
  10. カスケード反応 Cascade Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

分子のねじれの強さを調節して分子運動を制御する

第602回のスポットライトリサーチは、東京大学大学院理学系研究科 塩谷研究室の中島 朋紀(なかじま …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP