[スポンサーリンク]

一般的な話題

「Python in Excel」が機能リリースされたときのメリットを解説します

[スポンサーリンク]

先日、米Microsoft社が「Python in Excel」のパブリックプレビューを発表しました。

「Introducing Python in Excel: The Best of Both Worlds for Data Analysis and Visualization」https://techcommunity.microsoft.com/t5/microsoft-365-blog/introducing-python-in-excel-the-best-of-both-worlds-for-data/ba-p/3905482(参照日:2023年8月24日)

上記プレビュー記事を拝見する限り、パートナー企業さんからも好評を得ています。

この記事では、「Python in Excelに関するパブリックプレビュー」を拝見した際に、「魅力的だと感じた点」や「機能リリース後に、最大限メリットが得られるためにはどうしたら良さそうか」をまとめたものです。

内容は、Pythonやプログラミングに馴染みのない方にも、なるべく分かりやすくを意識しております。

※ なお、Python in Excelで搭載されている機能とその挙動については、筆者が調査した時点(参照: 2023/8/24)での内容に基づくものであり、今後のアップデート次第では内容の解釈が変わる可能性があること、ご承知おきください。

 

どんな機能が魅力的か?

まずは「Python in Excel」のプレビューにあたり、どのような機能が実装予定なのかを抑えておく必要があります。特に大きな魅力を感じた点を、以下2つ挙げました。

1.テーブルデータの選択から、データをインタラクティブに「DataFame」としても扱える
2.選択したセル内で「Pythonの処理コード」を実行できる

1.テーブルデータの選択から、データをインタラクティブに「DataFrame」としても扱える

そもそもとして、どういうことか。
イメージしやすいように、プレビュー記事には「動画が埋め込み」されておりますので、ざっと把握したい方は直接動画をご覧いただければ幸いです。(0:17~0:29あたり)

動画の該当箇所につき、DataFrameとして取り扱うまでの流れを言語化しますと、

1.Excelの関数を呼び出す要領で `=py` とセルに打ち込む
2.テーブルデータを範囲選択する
3.範囲選択されたテーブルデータが、DataFrameとして取り込まれる

上記のフローにて、DataFrameを扱えるようになっています!

DataFrameというのは、今回の説明の範囲内では「Pythonというプログラミング言語でデータ分析をしやすくするための、データのまとまり」くらいに抑えておけば、差し支えないです。

では、なぜDataFrameとして扱えるようになるとメリットがあるのかというと、ずばり「他のライブラリと連携しやすくなり、データの可視化や統計的分析に繋げやすくなる」からです。

こうした機能の追加により、「Excel上に眠っていたデータを、Excel上で操作しているユーザが主体で、データの可視化や統計的分析まで実行しやすくなる場が整備された」と言えるでしょう。

2.選択したセル内で「Pythonの処理コード」を実行できる

実行までの流れは、動画の1:00 ~ 1:10 で紹介されています。

Pythonの処理コード実行までのフローにおいて、他の実行環境(例. ブラウザ、コードエディタ、アプリ)に遷移することなく、Excelシート上で完結しており、かつPythonの処理コードが「明示的に記述」されていることにGoodボタンを押したくなりました!

ユーザがExcelに記録したデータに対し、機能側が割り込みで追加処理を提供し、「データ分析を行う前処理のイメージ」をつかみやすくするメリットが生まれる、といえるでしょう。

画像「Introducing Python in Excel: The Best of Both Worlds for Data Analysis and Visualization」https://techcommunity.microsoft.com/t5/microsoft-365-blog/introducing-python-in-excel-the-best-of-both-worlds-for-data/ba-p/3905482(参照日:2023年8月24日)より引用。(説明のため、一部文字による強調を入れております)

 

機能実装における「裏の狙い」を推察してみる

ソフトウェアやアプリケーションに限る話ではありませんが、何か新しい機能が実装される背景には「既存の機能のみだと技術的に問題がある」ので、「その問題を解決するために新しい機能が実装」されます。

Excelは30年以上もの歴史があるソフトウェアです。今回のような「大規模な機能実装」の背景には、筆者の予想だと「少なくとも4つの理由」があるのではないかと推察します。

1.Excelファイルに保持されたデータを、統計的分析に回すためのイメージが掴めていないユーザは多いのではないか?

2.Excelファイルを外部のプログラム・ライブラリで取り扱おうとしたときの、前提であるプログラム実行環境の構築でつまづくユーザは多いのではないか?

3.クラウド版Excelで保持されたデータの利活用が事例として少ないのではないか?(あるいは、まだまだ事例の浸透が確認できず、クラウド版Excelのメリットが見いだせていないユーザは多いのではないか?)

4.ネームバリューのあるExcelに、「ユーザからは見えない、割り込みの追加処理を機能として付与」したとしても、直接Pythonの処理コードが実行できるようになると幸せになるユーザは多いのではないか?

Python in Excelのような機能の実装は「ロードマップの序盤にすぎない」でしょうし、今後どのように展開していくのかは、大変興味深いです。

 

おわりに

最後に余談ですが、筆者のまわりから次のような質問を伺いまして、その回答を以下に載せておきます。
(類似の質問内容を複数個伺い、需要がありそうと判断したため、こちらに共有した次第です)

Q. Excelマクロ(VBA)とどう違うのか?

A. 少なくともプレビュー記事・動画を拝見した範囲内ではありますが、以下3点の点で「Python in Excelの機能のほうが優位性がある」と推察します。

1.実行に限り、記述言語の知識がほとんどなくても処理がまわる(≒ Pythonの文法の知識がなくても)

2.ユーザが見ているシート上で実行でき、プログラム・コマンド実行の画面(ターミナル、黒い画面)に遷移する必要がない

3.インタラクティブに処理を実行できている(マウス、キーボードで実行可能)

なお、これら優位性の違いは「記述言語の仕様に関わらず抽出されたもの」なので、「VBAとPythonの、どちらが優れているかを指摘していない」ことを、強調しておきます。

Q. Python in Excelの一般リリース後、機能のメリットを最大限に受け取るためにはどうしたらよいか?

A. Excelファイルにて保持されているデータを、「プログラムが処理しやすくなるように整理しておく」に尽きます。Pythonの処理コード実行は「ユーザからは見えない、割り込みの追加処理で行われる」としても、「Pythonの処理コードにデータとして渡す」ことに変わりはないので、処理側でエラーが発生しないように(思っていたのと違う結果にならないように)整理しておくと良さそうです。

たとえば、次の具体的なルールにもとづき「Excelのシート上に記録したデータ」を整理するとよいでしょう。

1.そのデータは、そもそも「データの可視化」「統計的分析」に渡す必要のあるデータか?(機能のお試しを除いて)

2.そのデータを用いて、何をさせたいかが明確か?(例. 経時変化を追跡したデータであり、データを可視化させたい。ある商品の月ごとの売上データであり、機械学習モデルの検証データとして利用したい、など。)

3.上記1.2.のクリアした上で、列指向型のテーブルデータとしての前処理がなされているか?(例. 列方向にまとめた商品価格のデータ(カラム)は、すべて半角であり、すべて数字であり(空白・記号などがひとつも入っていない)、すべて単位が揃っているかどうか、などを精査する。)

 

関連書籍

[amazonjs asin=”B01NCOIC2P” locale=”JP” title=”みんなのPython 第4版”] [amazonjs asin=”4320124618″ locale=”JP” title=”実用的でないPythonプログラミング: 楽しくコードを書いて賢くなろう!”]
Avatar photo

enifuji

投稿者の記事一覧

製造業、IT、ベンチャー企業との協業による新規プロジェクトの企画・実行
MVPアプリ開発からデータ基盤構築まで、事業価値創出に直結する技術実装
研究開発現場の深い理解に基づく、実用性と先進性を両立したソリューション設計

Agile/Scrum環境でのプロジェクトマネジメント3年~、AWS技術スタック3年~の実践経験
企画段階での立ち上げから商用リリースまで、複数プロジェクトでのリーダー、メンバーの実績

AWS環境における商用Webアプリケーションの開発リード(バックエンド、インフラ)
PoC段階から本格運用まで、事業フェーズに応じた最適な技術選定と実装戦略

関連記事

  1. Hybrid Materials 2013に参加してきました!
  2. 高硬度なのに高速に生分解する超分子バイオプラスチックのはなし
  3. 「海外PIとして引率する大気化学研究室」ーカリフォルニア大学アー…
  4. 進化する高分子材料 表面・界面制御 Advanced:高分子鎖デ…
  5. 第8回 FlowSTシンポジウム
  6. 【書籍】10分間ミステリー
  7. 思わぬ伏兵・豚インフルエンザ
  8. 条件最適化向けマテリアルズ・インフォマティクスSaaS : mi…

注目情報

ピックアップ記事

  1. パラムジット・アローラ Paramjit S. Arora
  2. その病気、市販薬で治せます
  3. 三中心四電子結合とは?
  4. マスクの効果を実験的に証明した動画がYoutubeに公開
  5. 1,2-還元と1,4-還元
  6. 1次面接を突破するかどうかは最初の10分で決まる
  7. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!
  8. ヒュッケル法(後編)~Excelでフラーレンの電子構造を予測してみた!~
  9. ドラえもん探究ワールド 身近にいっぱい!おどろきの化学
  10. 水蒸気侵入によるデバイス劣化を防ぐ封止フィルム

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP