[スポンサーリンク]

スポットライトリサーチ

白金イオンを半導体ナノ結晶の内外に選択的に配置した触媒の合成

[スポンサーリンク]

第559回のスポットライトリサーチは、京都大学化学研究所 物質創製化学研究系 精密無機合成化学研究分野(寺西研究室)に在籍され、現在はマックス・プランク固体研究所(Lotsch研究室) に所属の遠藤 健一(けんどう けんいち)博士にお願いしました。

寺西研究室では、様々な革新的エネルギー機能(室温単電子輸送、高効率フォトン濃縮、長寿命電荷分離、磁気交換結合、可視光水完全分解)の開拓を目指し、金属や金属カルコゲニド、金属酸化物といった無機物のナノ粒子の一次構造および二次構造を精密制御することにより、閉じ込め電子数、電荷密度、局在プラズモン共鳴波長、励起子寿命、スピン、触媒能の制御を行っています。

本プレスリリースの研究内容は、白金とナノ結晶からなる触媒についてです。本研究グループは白金単原子触媒をナノ結晶の表面/内部に選択的に担持する方法の開発に成功しました。この研究成果は、「Nature Communications」誌に掲載され、またプレスリリースにも成果の概要が公開されています。

Location-selective immobilization of single-atom catalysts on the surface or within the interior of ionic nanocrystals using coordination chemistry

Kenichi Endo, Masaki Saruyama and Toshiharu Teranishi

Nat Commun 14, 4241 (2023)

DOI:doi.org/10.1038/s41467-023-40003-8

研究室を主宰されている寺西 利治教授より遠藤博士についてコメントを頂戴いたしました。

遠藤健一さんの学生時代の研究のバックグランドは“錯体化学”でしたが、無機ナノ物質にも興味をもっていました。京大化学研究所の当研究室に研究員として参加してから、錯体化学の手法を利用した半導体ナノ結晶への白金単原子触媒の位置選択的担持法について研究をスタートしました。遠藤さんは有機合成から無機合成まで幅広い知見と経験を身につけており、自身のバックグラウンドを新しい分野とスムーズに融合させることのできる高い柔軟性が、今回の成果に結びついたのだと思います。現在、単原子触媒は世界中の触媒研究の注目の的となっており、本研究成果が今後の単原子触媒分野に多大な貢献をすることを期待するとともに、遠藤さんのマックス・プランク固体研究所での研究成果も楽しみにしています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

貴金属触媒粒子を極限まで小さくした単原子触媒は次世代の触媒として期待されていますが、その土台となる担体との位置関係がどう触媒性能に影響するか、またどのような手法でその位置関係を制御できるかは知られていませんでした。今回我々は、白金イオンをCdSe半導体ナノ結晶に担持した単原子触媒において、錯体化学を利用した白金イオンの位置制御法を開発しました。原料となる白金錯体および溶媒、配位子を使い分けることによって、白金イオンがCdSeナノ結晶の表面上に吸着された状態と、結晶内部に取り込まれた状態の2種類の担持構造を選択的に作り分けることができることを明らかにしました(下図)。

さらに、白金イオンが表面上のみに存在する構造が、光触媒として水からの水素発生反応を高い活性と安定性で触媒することを示しました(下図)。本研究から得られた知見は、単原子触媒の担体に対する位置関係が触媒性能に重要であることを示すとともに、担体内外における単原子触媒の位置を自在に制御する新しい手法を与えるものです。この知見をもとに、高性能な単原子触媒の設計・合成が進展することが期待されます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

無機ナノ結晶の表面上で錯体化学的な反応制御が行えるということに気づいたのが、この研究のターニングポイントでした。自分は博士課程まで溶液中の錯体化学を専門にしてきたのですが(以前の記事)、ポスドクになるにあたって別分野に触れたいと思い、無機ナノ結晶を専門とする寺西研究室の門を叩きました。当初は別の目標で研究を行っていたのですが、実験を行い、また文献を読み込んでいくうちに、表面上での反応が錯体化学的に記述できることに気づきました。そこからこの研究の肝となった、トランス効果とプロトンを利用して、白金の反応を制御するという発想が生まれました。また、実際に表面上担持に利用したcis-[PtCl2(dmso)2]は錯体化学ではしばしば使われる原料ですが、ナノ結晶や単原子触媒の論文ではまず見かけることがないものです。錯体化学の知識をナノ結晶・単原子触媒の化学に持ち込むことで新たな発見ができ、分野を変えた甲斐がありました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ナノ結晶の化学に慣れる上で一番苦労したのは、生成物の分析でした。有機分子や錯体であればNMR, MS, SCXRDだけで反応の様子が分かり、上手くいっているのか、何を変えればいいのか検討がつきます。一方でナノ結晶にはこれらの分析法は使えず、UV–visなどにより分析しますが、情報が間接的で解釈が難しく、騙されることもよくありました。そこで研究室にある測定装置や共同設備を片っ端から試し、多角的な分析を行いました。最終的にはICP-OES, EDX, TEM, STEM-EDX, IR, UV–vis, UPS, XPS, XAFS, PXRD, SAXSで分析を行い、厚さが定まった小板状ナノ結晶を用い、また有機配位子からのシグナルも活用し、ナノ結晶表面上と内部に存在する貴金属原子の区別というこれまでにない分析を達成することができました。

Q4. 将来は化学とどう関わっていきたいですか?

現在はドイツのマックス・プランク固体研究所でポスドクを務めており、Covalent Organic Framework (COF)と呼ばれる有機結晶に金属イオンを導入した触媒の研究を行っています(プレプリント)。物質の種類は変わりましたが、固体材料の中での金属イオンの環境を制御し、それを触媒反応に活かすという目標は変わりません。固体触媒は不均一系触媒とも呼ばれ、安定性・分離可能性などの点から有用ですが、触媒の構造も不均一になることが多いのが難点です。そのため、精密な構造制御を可能にする合成法の開発や、それに基づく構造–活性相関の解明により、化学の発展に貢献する研究を行っていきたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

溶液系の錯体化学を扱ってきた自分にとって、この研究はナノ結晶と光触媒という2つの新しい分野への挑戦となりました。そのため最初の半年は勉強と新しい合成法・分析法に慣れるために費やしましたが、最終的には錯体化学の知識を持ち込んだ新しい知見をもたらすことができ、良かったと思います。また、単純に新しい分野を学ぶのは楽しいですし、幅広い技術を学ぶこともできました。博士や修士修了の区切りが近い方は、新しい分野に飛び込んでみてはいかがでしょうか。

最後に、ナノ結晶に関しては素人の自分を雇ってくださり研究の方向性を指導してくださった寺西利治先生、日頃から相談に乗ってくださり研究をブラッシュアップしてくださった猿山雅亮先生、ナノ結晶の化学と装置の使い方を一から教えてくださった研究室メンバー一同に、この場を借りて深く感謝申し上げます。また、このような紹介の機会を与えてくださったChem-Stationの方々に御礼申し上げます。

研究者の略歴

名前:遠藤健一(けんどう けんいち)

所属(当時):京都大学 化学研究所 寺西研究室

所属(現在):マックス・プランク固体研究所 Lotsch研究室

研究テーマ:金属イオンを含むCOFによる電気化学的CO2還元触媒

略歴:

2020年3月 東京大学大学院理学系研究科化学専攻(塩谷研究室) 博士

2020年4月–2021年9月 京都大学化学研究所(寺西研究室) 研究員

2021年10月–現在 マックス・プランク固体研究所(Lotsch研究室) 研究員

(2023年2月–現在 フンボルト財団フェロー)

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. ついにシリーズ10巻目!化学探偵Mr.キュリー10
  2. 第42回ケムステVシンポ「ペプチドと膜が織りなす超分子生命工学」…
  3. デスソース
  4. 化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編
  5. 芳香族化合物のC–Hシリル化反応:第三の手法
  6. 「つける」と「はがす」の新技術|分子接合と表面制御 R3
  7. MI conference 2025開催のお知らせ
  8. ChemDrawの使い方【作図編①:反応スキーム】

注目情報

ピックアップ記事

  1. FT-IR(赤外分光法)の基礎と高分子材料分析の実際【終了】
  2. 記事評価&コメントウィジェットを導入
  3. 2008年ノーベル化学賞『緑色蛍光タンパクの発見と応用』
  4. パール・クノール ピロール合成 Paal-Knorr Pyrrole Synthesis
  5. ヘリウム Helium -空気より軽い! 超伝導磁石の冷却材
  6. エポキシ樹脂の硬化特性と硬化剤の使い方【終了】
  7. 振動結合:新しい化学結合
  8. 情報守る“秘密の紙”開発
  9. マイクロ波加熱を用いた省エネ・CO2削減精製技術によりベリリウム鉱石の溶解に成功
  10. ヒンスバーグ チオフェン合成 Hinsberg Thiophene Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

有機合成化学協会誌2025年6月号:カルボラン触媒・水中有機反応・芳香族カルボン酸の位置選択的変換・C(sp2)-H官能基化・カルビン錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年6月号がオンラインで公開されています。…

【日産化学 27卒】 【7/10(木)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会

現役研究者18名・内定者(26卒)9名が参加!日産化学について・就職活動の進め方・研究職のキャリアに…

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP