[スポンサーリンク]

スポットライトリサーチ

超塩基に匹敵する強塩基性をもつチタン酸バリウム酸窒化物の合成

[スポンサーリンク]

第604回のスポットライトリサーチは、東京工業大学 元素戦略MDX研究センターの宮﨑 雅義(みやざぎ まさよし)助教にお願いしました。

本プレスリリースの研究内容は強塩基性の酸窒化物についてです。炭素―炭素の結合形成やビニル基の転位反応を触媒する塩基性酸化物は、酸素原子が塩基点として作用するため、酸素イオンとの電気陰性度の差が大きいアルカリ金属やアルカリ土類金属を用いて触媒が開発されてきました。一方で本研究では酸素イオンではなく、酸素空孔に隣接した窒素イオンに着目し、窒素イオンと酸素空孔が隣接した構造を有する六方晶BaTiO3-xNyが、超塩基触媒に匹敵する高い塩基性を示すことを見出しました。この研究成果は、「Journal of the American Chemical Society」誌に掲載され、またプレスリリースにも成果の概要が公開されています。

BaTiO3–xNy: Highly Basic Oxide Catalyst Exhibiting Coupling of Electrons at Oxygen Vacancies with Substituted Nitride Ions
Masayoshi Miyazaki, Hiroshi Saito, Kiya Ogasawara, Masaaki Kitano*, and Hideo Hosono*
J. Am. Chem. Soc. 2023, 145, 48, 25976-25982
DOI:doi.org/10.1021/jacs.3c10727

研究室を主宰されている元素戦略MDX研究センターの北野 政明教授より宮崎助教についてコメントを頂戴いたしました!

宮崎さんは、2020年4月から当グループに助教として加わってくだり、実験的能力だけでなく理論計算に関する知識も豊富であるため、私にはできない指導を学生にして頂けるので非常に助かっています。当グループでは、細野秀雄特命教授と共に研究を進めており、固体材料の電子構造が触媒特性に与える影響を重要視しています。宮崎さんは、元々金属間化合物触媒の研究をされており、固体材料中の原子配置や電子状態と触媒性能との関係を詳細に検討されていましたので、比較的スムーズに当グループのスタイルに馴染んだのだと思っています。今回の研究では、学生の齋藤君とともに酸窒化物材料を使った別の研究テーマを進行していたのですが、うまくいかないところも多く苦労している中で、「材料がもつ塩基性がかなり高いのでは?」と彼らが気づいたため今回の成果に繋がったと感じています。酸窒化物なら何でも塩基性が高くなるのではなく、窒素と近接するアニオン欠陥電子の共存が重要であることを宮崎さんが理論的に証明したところもポイントで、今後もさらにいい研究成果を出してくれると期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

この研究は北野研究室に所属していた修士課程の齋藤君が行ったものです。本研究では、六方晶チタン酸バリウム酸水素化物(BaTiO2-xHx)に窒素イオンと酸素空孔を導入したチタン酸バリウム酸窒化物(BaTiO2-xNy)は、ドープしていない酸化物よりも非常に強い塩基性を示すことを明らかにしました(図1a)。酸窒化物中の窒素イオンは、酸素空孔にトラップされた電子からの電子供与によって高いエネルギー準位を形成しており、高い酸基質との反応性を示します(図1b)。

図1. (a)六方晶チタン酸バリウム酸化物の面共有酸素のヒドリド、窒素イオン置換による酸水素化物・酸窒化物の形成、(b)チタン酸バリウム酸窒化物のサイト構造とバンド構造

触媒の塩基性はCO2吸着昇温脱離、クロロホルム吸着IRおよび、クネフェナーゲル縮合反応によって検討しました。特に、クネフェナーゲル縮合反応の結果から、合成した酸窒化物は超塩基に匹敵する高い塩基性を有しながら、大気下でも活性を示し、高い再利用性を合わせ持つ触媒であることを明らかにしました(図2)。

図2. 異なる酸解離定数を持つニトリルを基質としたクネフェナーゲル縮合反応の結果

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

固体触媒の塩基強度をバンド構造によって説明したところがポイントであると感じています。酸化物のバンド構造に着目すると、酸塩基反応は酸化物のHOMOを構成する酸素イオンの2p軌道から酸基質のLUMOへの電子移動反応であると言えます。そのため、より強い塩基触媒を開発するためには、「塩基のHOMO のエネルギー準位を高め、酸のLUMOとの相互作用を強くする」、「塩基の電子密度を増加させ、LUMOへの電子移動を促進させる」という二つの条件を満たす必要があります。酸素空孔が存在しないLaTiO2Nなどの酸窒化物では、LUMOのエネルギー準位が少しシフトするに留まります。一方で、チタン酸バリウム酸窒化物中の窒素イオンはこれらの条件を満たすバンド構造を有しているため、高い塩基性を示すことを説明することができます。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

一般的な塩基強度の評価には、フェノールフタレインに代表される指示薬を用いた呈色反応が用いられますが、可視光吸収をもつ材料には不向きであり、色の変化によって塩基触媒の強度を決めることは困難でした。そのため、この研究ではニトリルとアルデヒドを基質として用いたクネフェナーゲル縮合反応を採用しました。異なる酸解離定数(pKa)を有するニトリルを反応基質として用いると、それぞれの触媒を用いて得られた活性から塩基強度を定量的に評価することができます。これにより、合成した酸窒化物は非常に活性化が難しいpKa = 28.9のニトリルを活性化できる強い塩基性を示すことを実証できました。

Q4. 将来は化学とどう関わっていきたいですか?

触媒の分野では、多くの研究が優れた性能を示す触媒のみに着目し、従来よりも良い性能を示す理由を説明しています。このような研究は正しく触媒性能を説明しているように見えますが、得られた理論は性能の低い触媒には当てはまらないことが多く、真に触媒性能を支配している要因を明らかにできていないと感じています。個人的には、優れた触媒を開発することにこだわらず、活性が低い触媒も含めたすべての触媒性能を説明できるサイエンスを明らかにしていきたいと思います。また、触媒研究ではどうしても応用化学的な立場に凝り固まってしまっていますが、物性物理からの切り口が重要であると痛感しています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

酸塩基触媒は中学生から学ぶ非常に古典的な分野ですが、超酸・超塩基触媒に代表されるように現在でも開発が続いている領域です。特に、物理的なバンド構造と化学的な塩基性を結びつけることができれば、特定の塩基強度を持つ触媒を開発できるのではないかと期待しています。

最後に、素晴らしい研究環境とご指導を頂いている細野秀雄特命教授、北野政明教授に改めて感謝申し上げます。また、研究を進めてくれた齋藤滉君、北野研究室の皆様に厚くお礼申し上げます。

研究者の略歴

名前:宮﨑 雅義(みやざぎ まさよし)
所属:東京工業大学 国際先駆研究機構 元素戦略MDX研究センター

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 化学者のためのエレクトロニクス講座~半導体の歴史編~
  2. 蛍光と光増感能がコントロールできる有機ビスマス化合物
  3. 力を加えると変色するプラスチック
  4. 塩基と酸でヘテロ環サイズを”調節する”
  5. 激レア!?アジドを含む医薬品 〜世界初の抗HIV薬を中心に〜
  6. 怒涛の編集長 壁村耐三 ~論文と漫画の共通項~
  7. 超原子価ヨウ素を触媒としたジフルオロ化反応
  8. ワサビ辛み成分受容体を活性化する新規化合物

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高校教科書に研究が載ったはなし
  2. 日本にあってアメリカにないガラス器具
  3. 尿はハチ刺されに効くか 学研シリーズの回顧
  4. 新規重水素化触媒反応を開発―医薬品への直接重水素導入を達成―
  5. ランタノイド Lanthanoid
  6. 2009年9月人気化学書籍ランキング
  7. フローケミストリーーChemical Times特集より
  8. クラプコ脱炭酸 Krapcho Decarboxylation
  9. 第158回―「導電性・光学特性を備える超分子らせん材料の創製」Narcis Avarvari教授
  10. AIBNに代わるアゾ開始剤!優れた特長や金属管理グレート品、研究に役立つ計算ツールもご紹介

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP