[スポンサーリンク]

chemglossary

リガンド効率 Ligand Efficiency

[スポンサーリンク]

 

リガンド効率 (Ligand Efficacy: LE) またはリガンド効率指数 (Ligand Efficiency Index: LEI) とは、創薬において標的タンパク質と相互作用する分子の結合能を評価する指標の一つである。2004 年に当時ファイザーの Hopkins らが提唱した[1]リガンド効率とは、分子の大きさに対する結合強度の比で表される値である。すなわち、結合自由エネルギー (ΔG) を重原子数 (分子中の水素原子以外の原子数) で除したものがリガンド効率と定義される。

この式のΔG は以下のように置き換えられる。ここで Kd は解離定数、Rは気体定数、Tは絶対温度を表す。

Kd を正確に求めるには等温滴定型カロリメトリー (ITC) などの測定技術が必要だが、 Kd を IC50 など簡便な指標に置き換えることもできる (次式)[2]

Fragment-Based Drug Discovery (FBDD) では、見つかってきた小分子リガンドの結合親和性は必ずしも高くない。しかしながら、結合親和性は各リガンドによって異なり、より小さいリガンドで強い結合活性を示すものは、それを起点とした Hit-to-Lead アプローチにおいて分子量や脂溶性の増大を抑えることができ、大きなアドバンテージを持つ。一般に活性が高くなるにつれて、見た目の LE は低下する傾向にあることが知られており、FBDD では予め充分に高いリガンド効率を示す化合物を出発点にすることが望ましい[3]

その他の記述子を用いた指標

リガンド効率を表すものとして、先に示した LE (LEI) の代わりに、結合効率指数 (Binding Efficiency Index: BEI) が用いられることもある。これは薬理活性値を分子量で割ったものである。一口に重原子といっても、炭素原子とハロゲン原子などを同列に扱うことは適切ではない可能性もある。そこで用いられるのが、分子の大きさを分子量としてより簡便に表現した BEI である。そのほか、阻害活性 (%inhibition)を分子量で除したパーセント阻害効率指数 (PEI)、薬理活性を極性表面積 (PSA) で除した表面結合効率指数 (SEI) などもリガンド効率の代替指標として用いられることがある[4]

         表1 各種リガンド効率の指標–文献[4]より引用

Fit Quality

Raynolds らの調査では、最大リガンド効率は、分子サイズの増大とともに減少することがわかった。つまりリガンド効率は、分子サイズが小さいヒットの場合に過大評価される傾向がある。そこで Raynoldsらは、リガンドのサイズに依存しない指標として、Fit Quality (FQ) を提唱した[5]

FQ は、実測のリガンド効率を、計算により達成可能な最大リガンド効率 (LE_Scale) で割ることで得られる。

ここで、LE_Scale は以下のように定義される。HA は分子中の非水素原子数である。

リガンド脂溶性効率

リガンド脂溶性効率 (Ligand-Lipophilicity Efficiency: LLE) も FBDD において好んで用いられる指標である。提唱者が異なる LipE(Lipophilic Efficiency)という同様の指標も存在する。
脂溶性は化合物の ADMET 特性に直結するパラメータであり、また高脂溶性化合物は高い薬理活性を示しやすいものの、非特異的な相互作用を誘発しオフターゲット効果を発現しやすい欠点を持つ。LLE はこのような安全性の懸念を含めた脂溶性と薬理活性の相関を評価するための指標であり、以下の式で定義される。

LLE が大きいほどより特異的な結合を示し、開発候補化合物として優れていると考えられる。ただし LLE は、分子サイズが尺度として採用されていない点でリガンド効率指数との混同に注意が必要である。フラグメントヒットは LLE ≥ 3 を持つことが好ましく、Hit-to-Lead では LLE > 5~7 程度を目指すべきだと、Schultes らの総説では述べられている[6]

その他、リガンド効率のクライテリアに関して同総説で以下の表が提唱されている。

表2 FBDDにおいて各種リガンド効率の目安となるスコア–文献[6]より引用

リガンド効率を重視した構造展開

以下では、ケムステと提携しているMEDCHEM NEWS の記事[3]より、リガンド効率を重視した FBDD による構造展開の例を引用して紹介する。
Astex 社によるサイクリン依存性キナーゼ (CDK) 阻害剤では、ヒットフラグメントとしてインダゾール (1) が見出された。容易に入手可能なインダゾール-3-カルボン酸を足場に LE を損なわない構造展開を行い、特に3から4への展開では IC50 値が大幅に低下しているものの、リガンド効率は保ったまま芳香環数の削減に成功している。その後も、表2 に示す LE ≥ 0.3 を保ちながらリード化合物 (7)を創出し、開発候補化合物 (8, AT7519) の開発に成功した。活性だけを見ると、3 から 4 への展開は妥当性に欠けるものの、リガンド効率を駆動力とすることで結果的に優れたリード創出に繋がった好例と言えるだろう。

なお、この CDK 阻害剤の開発においては、インダゾール (1) の他にナフタレン-スルホンアミド (9) も同じ結合ポケットをターゲットとしたヒットフラグメントとして見つかっていた [7]。IC50の差は微々たるもので有意差は無いかもしれないないが、の方がやや高活性で優れたヒットのように見えるかもしれない。しかしリガンド効率を算出すると、1の方が構造展開可能性においてより優れたヒットであることが分かった。

おわりに

リガンド効率の提唱から20年ほど経ち、数多くの指標が産み出されるに至っている。どういった指標を参考に構造展開を行なっていくかは戦略によってさまざまであろうが、とりわけアカデミアで行われる小規模な構造展開では薬理活性の強さに興味が惹かれがちで、リガンド効率のようなパラメータは見過ごされる傾向が強く感じられる。

リガンド効率は FBDD のような低分子創薬において強力な指標となるが、近年注目されている PPI 阻害薬や PROTACs のような、Beyond the Rule of 5 とも呼ばれる中分子化合物のデザインにおいても応用できる可能性がある。とりわけ PPI 阻害薬の開発過程では分子量や脂溶性が過剰に増大しがちであり、スクリーニングの段階でいかにリガンド効率や LLE に優れたヒットを見出すかが重要であろう。

参考文献

[1] Hopkins A.L. et al., “Ligand efficiency: a useful metric for lead selection”, Drug Discov. Today, 2004, 9, 430–431, DOI: 10.1016/S1359-6446(04)03069-7.

[2] Shultz M.D., “Setting expectations in molecular optimizations: Strengths and limitations of commonly used composite parameters”, Bioorg. Med. Chem. Lett, 2013, 23, 5980-5991, DOI: 10.1016/j.bmcl.2013.08.029.

[3] 田中大輔、”創薬化学者にとっての Fragment-Based Drug Discovery”, MEDCHEM NEWS, 2010, 20(1), 14-17, DOI: 10.14894/medchem.20.1_14.

[4] 田中大輔、”Fragment-Based Drug Discovery : その概念と狙い”、SAR NEWS, 2008, No.15.

[5] Raynolds C.H. et al., “The role of molecular size in ligand efficiency”. Bioorg. Med. Chem. Lett. 2007, 17, 4258–4261, DOI: 10.1016/j.bmcl.2007.05.038.

[6] Schultes S et al., “Ligand efficiency as a guide in fragment hit selection and optimization“, Drug Discovery Today, 2010, 7(3), e157-e162, DOI: 10.1016/j.ddtec.2010.11.003.

[7] 田中大輔、”Fragment-Based Drug Discovery : その概念と狙い”、YAKUGAKU ZASSHI, 2010, 130(3), 315-323, DOI: 10.1248/yakushi.130.315.

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. ポリメラーゼ連鎖反応 polymerase chain reac…
  2. 蛍光異方性 Fluorescence Anisotropy
  3. ソーレー帯 (Soret band) & Q帯 (Q …
  4. クオラムセンシング Quorum Sensing
  5. HKUST-1: ベンゼンが囲むケージ状構造体
  6. レドックスフロー電池 Redox-Flow Battery, R…
  7. Undruggable Target と PROTAC
  8. 熱活性化遅延蛍光 Thermally Activated Del…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2018年2月号:全アリール置換芳香族化合物・ペルフルオロアルキル化・ビアリール型人工アミノ酸・キラルグアニジン触媒・[1,2]-ホスファ-ブルック転位
  2. 化学のあるある誤変換
  3. ジブロモイソシアヌル酸:Dibromoisocyanuric Acid
  4. 【速報】2015年ノーベル化学賞は「DNA修復機構の解明」に!
  5. なぜあの研究室の成果は一流誌ばかりに掲載されるのか【考察】
  6. 関大グループ、カプロラクタムの新製法開発
  7. 揮発した有機化合物はどこへ?
  8. ハートウィグ・宮浦C-Hホウ素化反応 Hartwig-Miyaura C-H Borylation
  9. Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~
  10. 博士号で世界へ GO!-ー日本化学会「化学と工業:論説」より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP