[スポンサーリンク]

化学者のつぶやき

金属を超えるダイヤモンド ーボロンドープダイヤモンドー

[スポンサーリンク]

 

希少金属であるレアメタルは日本には多くなく、もちろん世界に無限にあるものではありません。

だから金属に代替する材料というのは非常に重要なトピックです。いま世界にある金属が恒久的に使えるものであるという保証はどこにもないのです。

 

「金属がないならダイヤモンドを使えばいいじゃない」

いささかマリー・アントワネット的な台詞ではありますが、現実的でないわけではありません。永遠の輝きをもつ、宝石のようなダイヤモンドの合成はムズカシイのですが、ダイヤモンドの結晶構造をもつ、より結晶サイズの小さいダイヤモンドは比較的安価に作成できます。

そしてダイヤモンドにホウ素をドープすると、そのドープ濃度に応じてダイヤモンドは絶縁体、導電体、超電導とその導電性を高めていきます。

 

今回はいま注目のボロンドープダイヤモンドにスポットを当てていきたいと思います。

ダイヤモンドというのは炭素がsp3軌道による結合でできている炭素の結晶のことです。この結晶内の非常に短い共有結合は、強度を初め、ダイヤモンドの様々な性質を決めています。

 

diamond3.gif

ダイヤモンドの結晶構造(everyscience.comより転載)

ダイヤモンド構成する炭素原子、実はそのいくつかをホウ素原子で置き換える(ドープする)ことができます。ホウ素をダイヤモンドにドープすると、前述したようにその導電性に影響が出てきます。

ドープ濃度が低ければそのダイヤモンドは絶縁体ですが、ドープ濃度に応じて半導体→導電体と変化していき、おおよそ3%程度の高濃度ドープ率になると極低温で超電導性質を示すことも報告されています。

 

このようにして作られるボロンドープダイヤモンドは電極材料としても注目を集めています。導電性をもつダイヤモンド電極は電位窓が広く、バックグラウンド電流が小さいという、電極材料として非常に優れた特性を持っているためです。実際にこの性質を生かし、ヒ素などの有害金属物質や生体物質の電気化学センサーとしての有用性が示され、さらには実用化までもが目指されています。[1]

 

yasuuPicture 2.png

ダイヤモンド電極の電極特性(文献[1]より抜粋)

そしてこのボロンドープダイヤモンド電極を使い、メトキシラジカルを発生させて、それを有機合成に利用するという研究がごく最近Angewandte誌に発表されました。

 

Anodic Oxidation on a Boron-Doped Diamond Electrode Mediated by Methoxy Radicals

Takenori Sumi, Tsuyoshi Saitoh, Keisuke Natsui, Takashi Yamamoto, Mahito Atobe, Yasuaki Einaga, and Shigeru Nishiyama

Angew. Chem. Int. Ed. 2012 Early View, DOI: 10.1002/ange.201200878

 

このボロンドープダイヤモンドは、従来このような電極合成に使われるプラチナ電極やグラッシーカーボン電極に比べ、メトキシラジカルの発生が多いとされ、効率良く目的物の合成が達成されています。

 

diamond4.gif

(スキームは上記論文より引用)

このように従来の電極の能力を超えるボロンドープダイヤモンド。電気化学を必要とする現場に様々な革命を起こしていくかもしれません。

 

関連文献

  1. “Diamond electrodes for electrochemical analysis” Einaga, Y.  J. Appl. Electrochem. 2010, 40, 1807. DOI:10.1007/s10800-010-0112-z
  2. “Diamond Electrochemistry” Edited by Akira Fujishima, Yasuaki Einaga, Tata N. Rao, Donald A. Tryk., BKC Inc. and Elsevier (2005)

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. ポンコツ博士の海外奮闘録XIX ~博士,日本を堪能する①~
  2. ゴジラ級のエルニーニョに…出会った!
  3. 特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲ…
  4. データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3…
  5. ラジカル種の反応性を精密に制御する-プベルリンCの世界初全合成
  6. 【ナード研究所】新卒採用情報(2025年卒)
  7. (-)-ウシクライドAの全合成と構造決定
  8. 光電流の原子分解能計測に世界で初めて成功!

注目情報

ピックアップ記事

  1. 動的コンビナトリアル化学 Dynamic Combinatorial Chemistry
  2. 発明対価280万円認める 大塚製薬元部長が逆転勝訴
  3. 代表的有機半導体の単結晶化に成功 東北大グループ
  4. Google翻訳の精度が飛躍的に向上!~その活用法を考える~
  5. シャープレス不斉アミノヒドロキシル化 Sharpless Asyemmtric Aminohydroxylation (SharplessAA)
  6. 【金はなぜ金色なの?】 相対論効果 Relativistic Effects
  7. デヴィッド・ミルステイン David Milstein
  8. 世界初、RoHS 指令の制限物質不使用で波長 14.3μm の中赤外光まで検出可能な検出器を量産化
  9. キノリンをLED光でホップさせてインドールに
  10. 投票!2018年ノーベル化学賞は誰の手に!?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年5月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP