[スポンサーリンク]

化学者のつぶやき

金属を超えるダイヤモンド ーボロンドープダイヤモンドー

 

希少金属であるレアメタルは日本には多くなく、もちろん世界に無限にあるものではありません。

だから金属に代替する材料というのは非常に重要なトピックです。いま世界にある金属が恒久的に使えるものであるという保証はどこにもないのです。

 

「金属がないならダイヤモンドを使えばいいじゃない」

いささかマリー・アントワネット的な台詞ではありますが、現実的でないわけではありません。永遠の輝きをもつ、宝石のようなダイヤモンドの合成はムズカシイのですが、ダイヤモンドの結晶構造をもつ、より結晶サイズの小さいダイヤモンドは比較的安価に作成できます。

そしてダイヤモンドにホウ素をドープすると、そのドープ濃度に応じてダイヤモンドは絶縁体、導電体、超電導とその導電性を高めていきます。

 

今回はいま注目のボロンドープダイヤモンドにスポットを当てていきたいと思います。

ダイヤモンドというのは炭素がsp3軌道による結合でできている炭素の結晶のことです。この結晶内の非常に短い共有結合は、強度を初め、ダイヤモンドの様々な性質を決めています。

 

diamond3.gif

ダイヤモンドの結晶構造(everyscience.comより転載)

ダイヤモンド構成する炭素原子、実はそのいくつかをホウ素原子で置き換える(ドープする)ことができます。ホウ素をダイヤモンドにドープすると、前述したようにその導電性に影響が出てきます。

ドープ濃度が低ければそのダイヤモンドは絶縁体ですが、ドープ濃度に応じて半導体→導電体と変化していき、おおよそ3%程度の高濃度ドープ率になると極低温で超電導性質を示すことも報告されています。

 

このようにして作られるボロンドープダイヤモンドは電極材料としても注目を集めています。導電性をもつダイヤモンド電極は電位窓が広く、バックグラウンド電流が小さいという、電極材料として非常に優れた特性を持っているためです。実際にこの性質を生かし、ヒ素などの有害金属物質や生体物質の電気化学センサーとしての有用性が示され、さらには実用化までもが目指されています。[1]

 

yasuuPicture 2.png

ダイヤモンド電極の電極特性(文献[1]より抜粋)

そしてこのボロンドープダイヤモンド電極を使い、メトキシラジカルを発生させて、それを有機合成に利用するという研究がごく最近Angewandte誌に発表されました。

 

Anodic Oxidation on a Boron-Doped Diamond Electrode Mediated by Methoxy Radicals

Takenori Sumi, Tsuyoshi Saitoh, Keisuke Natsui, Takashi Yamamoto, Mahito Atobe, Yasuaki Einaga, and Shigeru Nishiyama

Angew. Chem. Int. Ed. 2012 Early View, DOI: 10.1002/ange.201200878

 

このボロンドープダイヤモンドは、従来このような電極合成に使われるプラチナ電極やグラッシーカーボン電極に比べ、メトキシラジカルの発生が多いとされ、効率良く目的物の合成が達成されています。

 

diamond4.gif

(スキームは上記論文より引用)

このように従来の電極の能力を超えるボロンドープダイヤモンド。電気化学を必要とする現場に様々な革命を起こしていくかもしれません。

 

関連文献

  1. “Diamond electrodes for electrochemical analysis” Einaga, Y.  J. Appl. Electrochem. 2010, 40, 1807. DOI:10.1007/s10800-010-0112-z
  2. “Diamond Electrochemistry” Edited by Akira Fujishima, Yasuaki Einaga, Tata N. Rao, Donald A. Tryk., BKC Inc. and Elsevier (2005)

関連記事

  1. 有機アジド(1):歴史と基本的な性質
  2. 「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・K…
  3. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  4. 未来のノーベル化学賞候補者
  5. カメレオン変色のひみつ 最新の研究より
  6. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応
  7. 人工軟骨への応用を目指した「ダブルネットワークゲル」
  8. 赤絵磁器を彩る絵具:その特性解明と改良

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 製薬大手のロシュ、「タミフル」効果で05年売上高20%増
  2. デヴィッド・ナギブ David A. Nagib
  3. 米ファイザーの第2・四半期は特別利益で純利益が増加、売上高は+1%
  4. デンドリマー / dendrimer
  5. パーキンソン病治療の薬によりギャンブル依存に
  6. 信じられない!驚愕の天然物たち
  7. リチウムイオン電池の特許動向から見た今後の開発と展望【終了】
  8. 私が思う化学史上最大の成果-2
  9. トリフルオロメタンスルホン酸2-(トリメチルシリル)フェニル : 2-(Trimethylsilyl)phenyl Trifluoromethanesulfonate
  10. トリフルオロメタンスルホン酸すず(II) : Tin(II) Trifluoromethanesulfonate

関連商品

注目情報

注目情報

最新記事

持続可能性社会を拓くバイオミメティクス

内容生物に学ぶ考え方は,ナイロンに見られるように古くからあった.近年,ナノテクノロジーの飛躍…

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

Chem-Station Twitter

PAGE TOP