[スポンサーリンク]

一般的な話題

物凄く狭い場所での化学

[スポンサーリンク]

 

 

あなたが赤いハイヒールを履いた綺麗なお姉さんと話す機会があったとします。そしてそのお姉さんにハイヒールで思いっきり足を踏まれます。その瞬間あなたの足には約0.01GPaの圧力がかかっていることになります。

人間界では0.01GPaの圧力を足にかけると、人は「痛がる」という挙動を示します。それでは分子やナノクリスタルに圧力をかけると一体どのような挙動を示すのでしょうか?今回はわりと大局的に最近の研究を紹介していこうと思います。

 

まずある物体に圧力をかけると、その分子はなるべく無駄なスペースをなくそうとして圧縮されます。毛糸玉を押すと潰れるのと同じ事です。分子で言うと分子間の圧縮されやすい相互作用(van der Waals力など)が圧縮され、個体結晶で言うと密度が濃い結晶構造に相転移します。そして動きにくくなります。例えば普通の状態であれば液体である水。この水が10GPaの圧力下では400度にしてまだ個体です。つまり“もの”はどんどん動きにくくなっていくのです。[1,2]

そしてこのスペースのなさはその分子軌道にも影響を与え始めます。下は福井謙一先生とともにノーベル賞を受賞したRoald Hoffmann博士の論文からの抜粋です。単純な例ではおなじみのピーナッツ型の窒素分子N2の電子軌道が、圧力下で距離が縮まると丸い楕円形に変化していくのです。

 

2015-12-22_15-49-17

図1 窒素分子に圧力をかけるとa)→d)のように分子軌道を変化させる[参考文献1より抜粋]

 

もちろんより複雑な分子や、結晶構造でも同じことが起こります。より限られたスペースの中で最も安定なエネルギーを得られる軌道を分子や結晶は探し、その欲望に従い形をかえていきます。もちろんHOMO-LUMOの軌道にも大きく影響し、ある圧力下で絶縁体が金属的な挙動を示すことも報告されています。また例えば金属などではその分子軌道によって高圧下で取りうる結晶構造が違ってきたりします。

 

ここまでは一般的な分子や結晶の話です。この分子をナノクリスタルに置き換えると、また新しいパラダイムがそこには開かれています。

例えばAlivisatosらのグループはナノクリスタルにすると、その結晶構造を変化させる圧力が変わることを見つけました。つまり普通のバルクの状態だとCdSeという半導体は2GPa程度で結晶構造が変化するのですが、それをナノクリスタルにしてどんどん小さくしていくと、その大きさに従って変化する圧力が高くなっていき、またもとの状態への戻り(ヒステリシス)が遅くなることを見つけました。[3]

 

つまり圧力下での化学という世界は、ナノクリスタルの世界でもそれとは別個の新しさが広がっているということを見つけたのです。

 

さらにこのナノクリスタルを綺麗に並べたナノクリスタル超格子(スーパーラティス)に圧力をかけるとどうなるのかというところに近年注目が集まっています。Cornell大学のWang博士を中心としたグループは上手く配列したナノパーティクルを上手く圧力をかけることにより、棒状にくっつけることや、シート状にくっつけることが可能であることを報告しています。[4]

 

mcontentjioaefsd.gif

図2 ナノパーティクルがくっついてナノワイヤーに変化する[参考文献4aのTOCより抜粋]

 

つまり圧力というのを使って、ナノパーティクルを違う形に加工することを提案しているのです。まるで粘土の玉をくっつけるがごとく、新しい形へと変化させます。

 

これらの流れの中からこれからの高圧下での実験はどのように進んでいくのでしょうか?温度を変えて挙動を調べてダイヤグラムを構築するというのはこれからの科学の知見として重要になることは間違いないでしょう。圧力前のサンプルを上手くデザインすることにより、高圧下でのみ作られうる新しいデザインのナノ構造を見出すことも重要になってくると思います。また無機のナノクリスタルと有機分子を上手く相互作用させうるような現象を観察することでも新たな世界が広がっていくことでしょう。

 

皆さんは粘土や毛糸を扱うように、ナノパーティクルや分子やポリマーをくっつけられたりすることが出来たら、どんなものが作ってみたいですか?

 

追記

この記事を制作している途中にRoald Hoffmann氏による寸劇を発見しました。高圧下で分子がどう動くかを劇にして説明しています。なかなか前衛的で刺激的なこの作品。難しい事象を説明する試みに新たな一石を投じるものであると思われます。
氏が化学者として活躍しているだけではなく、詩人としての顔を持ち合わせていることはWikipediaで知っていたのですが、まさか舞台監督としての顔も持ち合わせているとは。ぼくはこういう自由な発想をもつ科学者になりたいです。

 

 

参考文献

  1.   W. Grochala,  R. Hoffmann et al. Angew. Chem. Int. Ed. 2007, 3620. DOI : 10.1002/anie.200602485
  2.  一例として  C.L. Guillaume et al. Nature Physics 2011, 211.  DOI: 10.1038/NPHYS1864
  3. (a) S. H, Tolbert and A. P. Alivisatos Science 1994, 373 DOI: 10.1126/science.265.5170.373  (b) A. P. Alivisatoset al. Science 1996, 398. DOI: 10.1126/science.276.5311.398
  4. (a) H. Wu, Z. Wang et al. Angew. Chem. 2010, 8609. DOI: 10.1002/ange.201001581  (b) Z. Wang et al. JACS 2011, 14484. DOI: 10.1021/ja204310b

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 米国へ講演旅行へ行ってきました:Part II
  2. 有機合成化学協会誌2019年4月号:農薬・導電性電荷移動錯体・高…
  3. 2017年の注目分子はどれ?
  4. 経験の浅い医療系技術者でも希望にかなう転職を実現。 専門性の高…
  5. 異分野交流のすゝめ
  6. イナミドを縮合剤とする新規アミド形成法
  7. スローン賞って知っていますか?
  8. 新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ケミカル・アリに死刑判決
  2. MEDCHEM NEWS 31-2号「2020年度医薬化学部会賞」
  3. 機能を持たせた紙製チップで化学テロに備える ―簡単な操作でサリンやVXを検知できる紙製デバイスの開発―
  4. MOF-74: ベンゼンが金属鎖を繋いで作るハニカム構造
  5. エーテルがDiels–Alder反応?トリチルカチオンでin situ 酸化DA!
  6. 高分子を”見る” その2
  7. 対決!フタロシアニンvsポルフィリン
  8. イライアス・コーリー E. J. Corey
  9. フェイスト・ベナリー フラン合成 Feist-Benary Furan Synthesis
  10. 島津製作所がケムステVシンポに協賛しました

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年2月
 12345
6789101112
13141516171819
20212223242526
272829  

注目情報

最新記事

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP