[スポンサーリンク]

一般的な話題

物凄く狭い場所での化学

[スポンサーリンク]

 

 

あなたが赤いハイヒールを履いた綺麗なお姉さんと話す機会があったとします。そしてそのお姉さんにハイヒールで思いっきり足を踏まれます。その瞬間あなたの足には約0.01GPaの圧力がかかっていることになります。

人間界では0.01GPaの圧力を足にかけると、人は「痛がる」という挙動を示します。それでは分子やナノクリスタルに圧力をかけると一体どのような挙動を示すのでしょうか?今回はわりと大局的に最近の研究を紹介していこうと思います。

 

まずある物体に圧力をかけると、その分子はなるべく無駄なスペースをなくそうとして圧縮されます。毛糸玉を押すと潰れるのと同じ事です。分子で言うと分子間の圧縮されやすい相互作用(van der Waals力など)が圧縮され、個体結晶で言うと密度が濃い結晶構造に相転移します。そして動きにくくなります。例えば普通の状態であれば液体である水。この水が10GPaの圧力下では400度にしてまだ個体です。つまり“もの”はどんどん動きにくくなっていくのです。[1,2]

そしてこのスペースのなさはその分子軌道にも影響を与え始めます。下は福井謙一先生とともにノーベル賞を受賞したRoald Hoffmann博士の論文からの抜粋です。単純な例ではおなじみのピーナッツ型の窒素分子N2の電子軌道が、圧力下で距離が縮まると丸い楕円形に変化していくのです。

 

2015-12-22_15-49-17

図1 窒素分子に圧力をかけるとa)→d)のように分子軌道を変化させる[参考文献1より抜粋]

 

もちろんより複雑な分子や、結晶構造でも同じことが起こります。より限られたスペースの中で最も安定なエネルギーを得られる軌道を分子や結晶は探し、その欲望に従い形をかえていきます。もちろんHOMO-LUMOの軌道にも大きく影響し、ある圧力下で絶縁体が金属的な挙動を示すことも報告されています。また例えば金属などではその分子軌道によって高圧下で取りうる結晶構造が違ってきたりします。

 

ここまでは一般的な分子や結晶の話です。この分子をナノクリスタルに置き換えると、また新しいパラダイムがそこには開かれています。

例えばAlivisatosらのグループはナノクリスタルにすると、その結晶構造を変化させる圧力が変わることを見つけました。つまり普通のバルクの状態だとCdSeという半導体は2GPa程度で結晶構造が変化するのですが、それをナノクリスタルにしてどんどん小さくしていくと、その大きさに従って変化する圧力が高くなっていき、またもとの状態への戻り(ヒステリシス)が遅くなることを見つけました。[3]

 

つまり圧力下での化学という世界は、ナノクリスタルの世界でもそれとは別個の新しさが広がっているということを見つけたのです。

 

さらにこのナノクリスタルを綺麗に並べたナノクリスタル超格子(スーパーラティス)に圧力をかけるとどうなるのかというところに近年注目が集まっています。Cornell大学のWang博士を中心としたグループは上手く配列したナノパーティクルを上手く圧力をかけることにより、棒状にくっつけることや、シート状にくっつけることが可能であることを報告しています。[4]

 

mcontentjioaefsd.gif

図2 ナノパーティクルがくっついてナノワイヤーに変化する[参考文献4aのTOCより抜粋]

 

つまり圧力というのを使って、ナノパーティクルを違う形に加工することを提案しているのです。まるで粘土の玉をくっつけるがごとく、新しい形へと変化させます。

 

これらの流れの中からこれからの高圧下での実験はどのように進んでいくのでしょうか?温度を変えて挙動を調べてダイヤグラムを構築するというのはこれからの科学の知見として重要になることは間違いないでしょう。圧力前のサンプルを上手くデザインすることにより、高圧下でのみ作られうる新しいデザインのナノ構造を見出すことも重要になってくると思います。また無機のナノクリスタルと有機分子を上手く相互作用させうるような現象を観察することでも新たな世界が広がっていくことでしょう。

 

皆さんは粘土や毛糸を扱うように、ナノパーティクルや分子やポリマーをくっつけられたりすることが出来たら、どんなものが作ってみたいですか?

 

追記

この記事を制作している途中にRoald Hoffmann氏による寸劇を発見しました。高圧下で分子がどう動くかを劇にして説明しています。なかなか前衛的で刺激的なこの作品。難しい事象を説明する試みに新たな一石を投じるものであると思われます。
氏が化学者として活躍しているだけではなく、詩人としての顔を持ち合わせていることはWikipediaで知っていたのですが、まさか舞台監督としての顔も持ち合わせているとは。ぼくはこういう自由な発想をもつ科学者になりたいです。

 

 

参考文献

  1.   W. Grochala,  R. Hoffmann et al. Angew. Chem. Int. Ed. 2007, 3620. DOI : 10.1002/anie.200602485
  2.  一例として  C.L. Guillaume et al. Nature Physics 2011, 211.  DOI: 10.1038/NPHYS1864
  3. (a) S. H, Tolbert and A. P. Alivisatos Science 1994, 373 DOI: 10.1126/science.265.5170.373  (b) A. P. Alivisatoset al. Science 1996, 398. DOI: 10.1126/science.276.5311.398
  4. (a) H. Wu, Z. Wang et al. Angew. Chem. 2010, 8609. DOI: 10.1002/ange.201001581  (b) Z. Wang et al. JACS 2011, 14484. DOI: 10.1021/ja204310b

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」①(解答編…
  2. 化学素人の化学読本
  3. リンダウ会議に行ってきた①
  4. ナノの世界に朗報?!-コラニュレンのkg合成-
  5. シリカゲルはメタノールに溶けるのか?
  6. 美麗な元素のおもちゃ箱を貴方に―『世界で一番美しい元素図鑑』
  7. 光電変換機能を有するナノシートの合成
  8. Nature Chemistry誌のインパクトファクターが公開!…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 95%以上が水の素材:アクアマテリアル
  2. ご注文は海外大学院ですか?〜準備編〜
  3. アルカリ土類金属触媒の最前線
  4. 【太陽HD】新卒採用情報(20年卒)
  5. ニコラス反応 Nicholas Reaction
  6. リン酸アルミニウムを飲んだら爆発?
  7. 工程フローからみた「どんな会社が?」~OLED関連
  8. グライコシンターゼ (Endo-M-N175Q) : Glycosynthase (Endo-M-N175Q)
  9. 化学Webギャラリー@Flickr 【Part 3】
  10. ジョンソン オレフィン合成 Johnson Olefination

関連商品

注目情報

注目情報

最新記事

自己修復性高分子研究を異種架橋高分子の革新的接着に展開

第257回のスポットライトリサーチは、東京工業大学 大学院物質理工学院・鶴岡あゆ子さんにお願いしまし…

コロナウイルス関連記事 まとめ

新型コロナウイルスの影響で、キャンパスが閉鎖となる大学も増えてきていますね。私の周りでは、コロナウイ…

機械的力で Cu(I) 錯体の発光強度を制御する

第256回のスポットライトリサーチは、沖縄科学技術大学院大学(OIST)・錯体化学触媒ユニット 狩俣…

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

研究助成金&海外留学補助金募集:公益財団法人アステラス病態代謝研究会

令和2年度はじまりました。とはいってもほとんどの大学講義開始は延期、講義もオンライン化が進み、いつも…

ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基触媒の創製

第255回のスポットライトリサーチは、東北大学大学院理学研究科 化学専攻・石川 奨さんにお願いしまし…

Chem-Station Twitter

PAGE TOP