[スポンサーリンク]

化学者のつぶやき

C(sp3)-Hアシル化を鍵とするザラゴジン酸Cの全合成

[スポンサーリンク]

東京大学・井上将行らのグループは、高度に酸素官能基化された難関天然物・ザラゴジン酸Cの全合成を達成した。カルボニルの光励起によるC(sp3)−Hアシル化反応を鍵に、混み合った位置での炭素骨格構築・立体制御を効率的に行なっている。

“Total Synthesis of Zaragozic Acid C: Implementation of Photochemical C(sp3)−H Acylation”
Kawamata, T.; Nagatomo, M.; Inoue, M.* J. Am. Chem. Soc. 2017, 139, 1814. DOI: 10.1021/jacs.6b13263 (冒頭図は本論文より引用)

問題設定と解決した点

ザラゴジン酸ファミリーは哺乳類スクアレン合成酵素の強力な阻害剤(Ki = 29-78 pM)であり、コレステロール値低下薬のリードと見なされている。高酸化度ジオキサビシクロ[3.2.1]骨格を共通コアとし、その中には連続不斉中心6つが含まれる。特に四置換であるC4位、C5位の立体構築が困難な課題とされる。

この構造を選択的光励起を介するC(sp3)−H変換によって構築し、入手容易な糖原料から26工程でザラゴジン酸Cの全合成を達成した(ザラゴジン酸類の全合成としては11例目[1]にあたる)。

技術や手法のキモ

逆合成のポイントは、1)C6位アシル基の終盤導入、2)光励起C-Hアシル化を用いたC4位・C5位構築、3)C1位アルキル側鎖の序盤導入とC6位・C7位の立体がプールされる市販糖原料の使用である。

最大の見所は2)の過程であり、Norrish-Yang反応[2a]を鍵としている。今回の合成で用いられるC-Hアシル化形式は、アルキンから1工程で調製されるジケトンを出発物とし、Norrish-Yang生成物であるシクロブタンを開環することで達成される[2b]。縮環構造を与える基質設計にすることで、C-C結合が立体特異的に形成できる。

主張の有効性検証

①モデル基質での検討

以前の検討[2b]では位置選択的の付与に苦心していたが、本論文では標的炭素の電子状態調節によって位置選択性付与が可能である事を実証している。つまり置換基がCHOTBS>CH2>CHOBzの順で反応性が変化することを利用し、複数のC-H結合を区別できる。

②全合成

鍵工程となるC4位選択的C-Hアシル化について、特筆すべき工夫は次の通り。

  1. マイクロフローリアクターの使用:光照射効率の向上、大スケール合成への適用性などが採用理由。
  2. Violet光源(405nm)の使用:原料の励起波長にマッチした選択的励起が行えること、UV LED(365nm)では生成物の励起分解から副生成物を生じること、青色LED(465nm)は励起波長とマッチせず収率が向上しないことなどが理由。
  3. 光反応後は精製せずPb(OAc)4開裂:生成物が不安定であることが理由。
  4. C6位Bz保護による位置選択性発現:①のモデル検討通り。C9位C-Hも反応候補だが、配座的な理由から進行しないと考察されている。
  5. C3位の立体選択性発現:C8位OBzとC9位OBnの立体反発によると考察される(が、開裂によって消失するので重要ではない)。

終盤のトランスアセタール化については、苦労と検討の跡が見られる。収率は最高でも40%。これ以降は既報の合成例を参考に進めて完成している。

議論すべき点

  • Norrish-Yang反応は汎用官能基を足がかりにC-H変換が行えるので、使い方次第では強力。ジケトンではなく単純ケトンに対しても可視光で実施できないか?
  • 他のザラゴジン酸ファミリーは、酸素官能基化中心コアが共通で、飾りであるC6位アシル基とC1位長鎖アルキル基が違っている。理想を言うなら、これらを合成後半で導入できる経路設定の方が、網羅的な類縁体合成に繋がる。しかし今回のケースでは序盤でアルキル側鎖を導入している。終盤導入経路が設定できなかった理由はどこにあるか?

次に読むべき論文は?

  • ザラゴジン酸類の全合成に関する先例[1]:ざっと眺めるだけでも、一流の現役合成化学者として名を馳せる研究者がAuthor Listに多数見られることは驚きである。着目度の大きな高難度プロジェクトは、良い人材を育てるのだろう。
  • Norrish-Yang反応を鍵反応として活用した全合成例。Baranのウアバゲニン[3]など?Baran研と井上研はストラテジーも標的も関連しあう傾向があるので、比較して読むと楽しめる。
  • 光反応とフロー合成の親和性を記した総説[4]

参考文献

  1. 冒頭論文のref 7を参照 (多すぎるため省略)
  2. (a) Yang, N. C.; Yang, D.-D. H. J. Am. Chem. Soc. 1958, 80, 2913. DOI: 10.1021/ja01544a092 井上研での検討: (b) Kamijo, S.; Hoshikawa, T.; Inoue, M. Tetrahedron Lett. 2010, 51, 872. doi: 10.1016/j.tetlet.2009.12.027 (c) Yoshioka, S.; Nagatomo, M.; Inoue, M. Org. Lett. 2015, 17, 90. DOI: 10.1021/ol503291s
  3. Renata, H.; Zhou, Q.; Baran, P. S. Science 2013, 339, 59. DOI: 10.1126/science.1230631
  4. Cambie, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noel, T. Chem. Rev. 2016, 116, 10276. DOI: 10.1021/acs.chemrev.5b00707
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Lindau Nobel Laureate Meeting 動画…
  2. 有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギル…
  3. リンと窒素だけから成る芳香環
  4. 論文執筆で気をつけたいこと20(2)
  5. シンポジウム・向山先生の思い出を語る会
  6. 高機能・高性能シリコーン材料創製の鍵となるシロキサン結合のワンポ…
  7. ケミカルバイオロジーとバイオケミストリー
  8. アステラス病態代謝研究会 2019年度助成募集

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 特許取得のための手続き
  2. 緑色蛍光タンパク質を真似してRNAを光らせる
  3. 蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH
  4. アフリカの化学ってどうよ?
  5. 知られざる有機合成のレアテク集
  6. 光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発
  7. いつ、どこで体内に 放射性物質に深まる謎
  8. オンライン座談会『ケムステスタッフで語ろうぜ』開幕!
  9. 三共・第一製薬の完全統合、半年程度前倒しを検討
  10. ふにふにふわふわ☆マシュマロゲルがスゴい!?

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ロピニロールのメディシナルケミストリー -iPS創薬でALS治療に光明-

神経難病における iPS 細胞創薬に基づいた医師主導治験を完了 -筋萎縮性側索硬化症(A…

令和4年度(2022年度)リンダウ・ノーベル賞受賞者会議派遣事業募集開始のお知らせ

リンダウ・ノーベル賞受賞者会議への参加者を募集しています。本会議は、世界各地の若手研究者の育…

【ケムステSlackに訊いてみた⑤】再現性が取れなくなった!どうしてる?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

但馬 敬介 Keisuke TAJIMA

但馬 敬介(TAJIMA Keisuke, 1974年7月23日 – )は、日本の高分子化学者である…

Carl Boschの人生 その10

Tshozoです。このシリーズも10回を迎えましたが筆者の人生は進んでいません。先日気づいた…

「つける」と「はがす」の新技術|分子接合と表面制御 R3

開講期間令和3(2021)年  9月8日(水)、9日(木)(計2日間)※状況により、we…

第19回ケムステVシンポ「化学者だって起業するっつーの」を開催します!

少し前に化学者のつぶやきからこのような記事が出ました:【ケムステSlackに訊いて見た④】化学系学生…

10種類のスパチュラを試してみた

大好評、「試してみた」シリーズの第6弾。今回は試薬の秤量にか欠かせない、…

Chem-Station Twitter

PAGE TOP