[スポンサーリンク]

化学者のつぶやき

アルキルラジカルをトリフルオロメチル化する銅錯体

中国科学院 上海有機化学研究所のChaozhong Liらは、アルキルハライドから系中生成させた炭素ラジカルをトリフルオロメチル銅錯体でトラップすることにより、sp3炭素上のトリフルオロメチル化を室温・水系溶媒中で進行させることに成功した。

“Trifluoromethylation of Alkyl Radicals in Aqueous Solution”
Shen, H.; Liu, Z.; Zhang, P.; Tan, X.; Zhang, Z.; Li, C.* J. Am. Chem. Soc. 2017, 139, 9843-9846. DOI: 10.1021/jacs.7b06044

問題設定

トリフルオロメチル基の導入は化合物の脂溶性、浸透性、代謝安定性を高めるため、医農薬領域で重要視されている。とりわけC(sp3)-CF3結合形成に有効な手法は以下の3つに大別される。
(a) 求核的CF3:TMSCF3 (Ruppert-Prakash試薬)、FSO2CF2CO2Me (Chen試薬)、(Ph3P)3CuCF3 (Grushin試薬)
(b) 求電子的CF3:S(IV)-CF3(梅本試薬)、I(III)-CF3(Togni試薬)、S(VI)-CF3(柴田試薬)
(c) CF3ラジカル生成→不飽和結合への付加
しかしながら、(d) 炭素ラジカルに対するCF3はほぼ手つかずだった。少数ながら関連する先例としてR-N=N-CF3の高粘性溶媒中UV開裂[1]、Cu+CF3SO2Na+tBuOOHによるアルケンの1,2-ビスCF3化[2]が挙げられるものの、実用性は低い。

技術や手法のキモ

著者らは、アルキルラジカルのCF3化を行なうための試薬として、(bpy)CuIII(CF3)3錯体[3]を選択している。アルキルハライドから還元剤(Si-H、Sn-H)処理によってアルキルラジカルを選択的に生成し、これをCF3源へとぶつける発想で探索された系と推測される。錯体は下記のとおり簡便に合成でき、空気中で安定に扱える。

主張の有効性検証

①反応条件検討

6-bromohexyl tosylate を用いて初期検討を行なっている。OTs基はBr基と同程度に求核的CF3化に反応性を有する。その一方でラジカル機構では反応しないため、メカニズムへの示唆も得られる。

この6-Br-hexyltosylateと(bpy)Cu(CF3)3の混合系に、アルキルハライドと反応するシリルラジカル生成剤を添加する方針で検討している。最終的にアセトン/水(2/1)、室温、Cu錯体(1 eq)、K2S2O8(4 eq)、Et3SiH (6 eq)を最適条件として95%単離収率で目的のトリフルオロメチル化体を得ている。水の添加は酸化剤の溶解度に寄与していると考察されている。前駆体の(Bu4N)Cu(CF3)4[3]や、求電子的CF3化剤に対して同様の条件を適用しても反応は進行しない。

②基質一般性

1級&2級臭化アルキル:アミド、イミド、スルホンアミド、スルホナート、ベンジルエーテル、シリルエーテル、カルボン酸、ケトン、エステル、ニトリル、アセタール、カーバメート、塩化アルキル、塩化アリール、アジドなどなど、代表的な官能基はあらかた維持される。

3級臭化アルキル:オレフィン形成やヒドロキシルかなどの副生物を生じるため、上手く行かない。

ヨウ化アルキル:臭化物よりも高活性な筈だが、標準条件では20~30%収率、原料回収60~70%に留まってしまう。UV(365nm)照射によって改善が見られ、適用可となる。

③反応機構に関する示唆

ラジカルクロック実験(eq 1,2)、エチルラジカルとの反応(eq 3,4)などから、アルキルラジカルと(CuIII-CF3ではなく)CuII-CF3間の反応[4]が示唆される。

またTEMPO捕捉実験(eq 5)から、錯体へのUV照射によるCF3ラジカルの生成も示唆される。ヨウ化アルキルを基質とする場合には、おそらく酸化的に生成するI2がradical chainを止めている。UV照射にて生じるCF3ラジカルがこれをCF3Iの形で捕捉し、反応サイクルに再関与するため収率が向上するとの考察が成されている。

これらを踏まえて、以下の様な反応機構が提唱されている。

議論すべき点

  • 錯体調製の手間はあるものの、極めて簡便な操作でCF3基が導入できるのは魅力。錯体が市販されれば、一挙に広まりそうなポテンシャルを感じる。
  • 受容性が示されていない官能基はアルコール、アルデヒド、アミン、スルフィド、炭素-炭素多重結合、含窒素複素環。アミンは酸でプロトン化しておけば保つのではないだろうか。アルコールは系中生成するEt3Si-Xと反応してしまうのかも。酸化条件であるため、スルフィド、アルデヒドはさすがに仕方が無いか。CF3ラジカルのMinisci反応が走りそうな基質、配位性基質は不都合なのだろう。ベンジルエーテルもp-Cl置換だったりするので、ベンジル位が酸化されない基質をうまく選んでいるのかもしれない。
  •  キラルな配位子を錯体に付けることで不斉化も可能に思える。上記eq4を見るに、銅を触媒量に減らすことやphotoredox系と絡めることも検討次第で出来そうに思える。次なる展開か。

参考文献

  1. Gölitz, P.; de Meijere, A. Angew. Chem., Int. Ed. Engl. 1977, 16, 854. DOI: 10.1002/anie.197708541
  2. Yang, B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 1906. DOI: 10.1021/acs.orglett.5b00601
  3. Romine, A. M.; Nebra, N.; Konovalov, A. I.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. Angew. Chem., Int. Ed. 2015, 54, 2745. DOI: 10.1002/anie.201411348
  4. Nebra, N.; Grushin, V. V. J. Am. Chem. Soc. 2014, 136, 16998. DOI: 10.1021/ja5103508
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 科学史上最悪のスキャンダル?! “Climatega…
  2. 創薬に求められる構造~sp3炭素の重要性~
  3. 決め手はケイ素!身体の中を透視する「分子の千里眼」登場
  4. オキソニウムイオンからの最長の炭素酸素間結合
  5. 今年も出ます!!サイエンスアゴラ2015
  6. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  7. 第93回日本化学会付設展示会ケムステキャンペーン!Part II…
  8. ダイヤモンドは砕けない

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 炭素繊維は鉄とアルミに勝るか? 1
  2. 有機リチウム試薬 Organolithium Reagents
  3. メラニー・サンフォード Melanie S. Sanford
  4. SciFinder Future Leaders in Chemistry参加のススメ
  5. ロバート・メリフィールド Robert B. Merrifield
  6. 第35回構造有機化学討論会
  7. Lectureship Award MBLA 10周年記念特別講演会
  8. 水島 公一 Koichi Mizushima
  9. 第35回 生物への応用を志向した新しいナノマテリアル合成― Mark Green教授
  10. デルフチバクチン (delftibactin)

関連商品

注目情報

注目情報

最新記事

カーボンナノベルト合成初成功の舞台裏 (1)

今年もあともう少しですね。私は中国の大学院で研究を行っている日本人です。このChem-Sta…

有機合成化学の豆知識botを作ってみた

皆さんこんにちは。めっきり実験から退き、教育係+マネジメント係になってしまったcosineです。…

デニス・ドーハティ Dennis A. Dougherty

デニス・A・ドーハティ(Dennis A. Dougherty、1952年12月4日-)は、米国の物…

ベンゼンの直接アルキル化

ベンゼンにアルキル基を導入したいとき、皆さんはどのような手法を用いますか? (さらに&hel…

アメリカ大学院留学:TAの仕事

私がこれまでの留学生活で経験した一番の挫折は、ティーチングアシスタント(TA)です。慣れない英語で大…

2017年の注目分子はどれ?

今年も残りあとわずかとなり、毎年おなじみのアメリカ化学会(ACS)によるMolecules of t…

Chem-Station Twitter

PAGE TOP