[スポンサーリンク]

化学者のつぶやき

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

[スポンサーリンク]

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思います.今回は,生化学の知見を有機化学へと応用した,遺伝子の転写調節因子の一つであるLmrRの疎水性ポケットを利用した有機触媒反応例について紹介したいと思います.

転写調節因子LmrR

生物のもつゲノムDNAには多くの遺伝子 (何かしらの情報をもつ領域) がありますが,それらは常に発現されているわけではなく,転写調節因子などによって厳密に制御されています.そのなかでも乳酸菌Lactococcus lactisより見出された転写調節因子LmrRは薬剤耐性菌の研究対象として注目されてきました1
L. lactisは様々な毒性化合物にさらされると多剤耐性を示します.このメカニズムにLmrRが関わってきます.LmrRは本来,薬剤を生体外部へ排出するトランスポーターのプロモーター領域に結合しています2.ここで薬剤が生体内に入ってくると薬剤はLmrRと結合し,LmrRがプロモーター領域から外れることでトランスポーターの発現スイッチがオンとなり,薬剤が生体外部へ放出されます (図1)3

図1 : LmrRによる薬剤耐性機構 (参考文献3より引用)

ここで重要となってくるのが,この薬剤と結合するLmrRが多剤認識であるということです.この多剤認識機構はLmrRのタンパク質立体構造から説明できます.LmrRはホモ二量体を形成し,その境界面に大きな疎水性のポケットを持ちます.この疎水性ポケットに薬剤など様々な化合物が内包されます (図2)4

図2 : (A) LmrRに認識される化合物の例, (B-D) 化合物とLmrRの共結晶構造解析結果 (参考文献4より引用)

LmrRの疎水性ポケットを利用した有機反応1 : 配位子の結合

上記に述べた情報から,LmrRの疎水性ポケットに金属触媒を配位できるように設計し,多剤認識であるLmrRが様々な基質を受け入れることで有機反応を行わせることができるのではないか,とフローニンゲン大学のGerard Roelfes教授らは考えました5.彼らは,LmrRの疎水性ポケット中のアミノ酸をリシンに置換し,そのリシン残基特異的にリンカーを付加するように修飾を行い,リンカーの先に銅を配位させることでルイス酸性銅 (II) 錯体を作製しました (図3) .この人工酵素を用いることで,Diels-Alder反応を引き起こすことに成功し,ee 97%の高いエナンチオ選択的的な反応の進行に成功しました.

図3 : LmrRへのルイス銅 (II) 錯体の導入 (参考文献6より引用)

LmrRの疎水性ポケットを利用した有機反応2 : ポルフィリン環 (ヘム) の結合

図2で示すように,疎水性ポケットの中央部には96番目のトリプトファンが向かい合っており,これがπ-πスタッキングを起こしていることが分かります.これを利用して,様々な反応を引き起こすことが可能なヘムを結合させることに成功しました (図4) .このヘムを結合させたLmrRにおいて,ヘム鉄により反応が進行することが分かっているカルベン転移反応を成功させました7

図4 : LmrRへのヘムの導入とカルベン転移反応 (参考文献6より引用)

LmrRの疎水性ポケットを利用した有機反応3 : 非天然アミノ酸の導入と指向性進化

上記の研究などから,触媒をLmrRに組み込むことで,高いエナンチオ選択的触媒反応を引き起こすことが可能であることが分かりました.この理由として,タンパク質はその活性ポケットを構成するアミノ酸残基により受け入れる基質の配向や,触媒・活性中間体の安定化を担っていることが挙げられます.そこでこのLmrRに,非天然アミノ酸を組み込むことで,非天然アミノ酸が活性化する有機反応を触媒することが可能となるのではないかと考えました.具体的に,2024年5月に報告された,LmrRにボロン酸を含む非天然アミノ酸を組み込んだ研究例についてご紹介します.
ボロン酸はその毒性の低さや,ボロン酸のルイス酸性,ヒドロキシ基との交換反応により様々な反応を引き起こすことが可能です (図5)8

図5 : ボロン酸触媒による様々な反応 (参考文献8より引用)

しかし,ボロン酸触媒には一つ課題があり,それはボロン酸のみでエナンチオ選択的触媒反応を起こすのが難しい,という点です.これは,ボロン酸の安定化のためにボロン酸の隣にはアリール置換基などが必要であり,そのため不斉触媒として不斉点を入れるのが難しい,という点になります.これを唯一回避した研究例は一例のみであり,アザマイケル付加反応を,ビアリール触媒の軸不斉を用いることで成功しています (図6)9

図6 : ボロン酸のみに依存したエナンチオ選択的触媒反応 (参考文献8, 9より引用)

そこでLmrRにボロン酸を含む非天然アミノ酸としてp-boronophenylalanine (pBoF) を組み込み,さらに疎水性ポケットを構成するアミノ酸残基を指向性進化させることで活性を向上させ,α-ヒドロキシケトンとヒドロキシアミンの縮合反応によるエナンチオ選択的なオキシムの生産に成功しました (図7)10 .この研究では,非天然アミノ酸を組み込むために,LmrRに終止コドンを導入し,その終止コドンを認識するtRNA,このtRNAとpBoFを結合させるためのアミノアシルtRNA合成酵素を大腸菌へ形質転換することで人工酵素を精製しています.非天然アミノ酸を組み込む系の一番のメリットとして,一度この人工酵素を作る大腸菌を用意してしまえば,いつでも導入した非天然アミノ酸が触媒するタンパク質を精製することが可能,という点です.

図7 : 非天然アミノ酸を組み込んだ人工酵素によるエナンチオ選択的触媒反応 (参考文献11より引用)

最後に

本記事では,遺伝子の転写調節因子に着目し,その疎水性ポケットを利用した有機反応について紹介しました.このように横断的な研究というのは一つの分野に捉われずに,様々な分野の研究を知っていくことで生まれる発想だと思われます.そのため,自身の研究分野だけでなく,様々な分野の勉強をしていこうという自分自身への戒めにもなりました.
また人工酵素という部分については近年の酵素工学の分野では大きく発展している部分になります.今後も人工酵素については追っていきたいと思います.

参考文献

(1)   Agustiandari, H.; Lubelski, J.; van den Berg van Saparoea, H. B.; Kuipers, O. P.; Driessen, A. J. M. LmrR Is a Transcriptional Repressor of Expression of the Multidrug ABC Transporter LmrCD in Lactococcus Lactis. J. Bacteriol. 2008, 190 (2), 759–763. https://doi.org/10.1128/JB.01151-07.

(2)   Agustiandari, H.; Peeters, E.; de Wit, J. G.; Charlier, D.; Driessen, A. J. M. LmrR-Mediated Gene Regulation of Multidrug Resistance in Lactococcus Lactis. Microbiology 2011, 157 (Pt 5), 1519–1530. https://doi.org/10.1099/mic.0.048025-0.

(3)   Takeuchi, K.; Tokunaga, Y.; Imai, M.; Takahashi, H.; Shimada, I. Dynamic Multidrug Recognition by Multidrug Transcriptional Repressor LmrR. Sci. Rep. 2014, 4 (1), 6922. https://doi.org/10.1038/srep06922.

(4)   Madoori, P. K.; Agustiandari, H.; Driessen, A. J. M.; Thunnissen, A.-M. W. H. Structure of the Transcriptional Regulator LmrR and Its Mechanism of Multidrug Recognition. EMBO J. 2009, 28 (2), 156–166. https://doi.org/10.1038/emboj.2008.263.

(5)   Bos, J.; Fusetti, F.; Driessen, A. J. M.; Roelfes, G. Enantioselective Artificial Metalloenzymes by Creation of a Novel Active Site at the Protein Dimer Interface. Angew. Chem. Int. Ed Engl. 2012, 51 (30), 7472–7475. https://doi.org/10.1002/anie.201202070.

(6)   Roelfes, G. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Acc. Chem. Res. 2019, 52 (3), 545–556. https://doi.org/10.1021/acs.accounts.9b00004.

(7)   Villarino, L.; Splan, K. E.; Reddem, E.; Alonso-Cotchico, L.; Gutiérrez de Souza, C.; Lledós, A.; Maréchal, J.-D.; Thunnissen, A.-M. W. H.; Roelfes, G. An Artificial Heme Enzyme for Cyclopropanation Reactions. Angew. Chem. Int. Ed Engl. 2018, 57 (26), 7785–7789. https://doi.org/10.1002/anie.201802946.

(8)   Hall, D. G. Boronic Acid Catalysis. Chem. Soc. Rev. 2019, 48 (13), 3475–3496. https://doi.org/10.1039/c9cs00191c.

(9)   Hashimoto, T.; Gálvez, A. O.; Maruoka, K. Boronic Acid-Catalyzed, Highly Enantioselective Aza-Michael Additions of Hydroxamic Acid to Quinone Imine Ketals. J. Am. Chem. Soc. 2015, 137 (51), 16016–16019. https://doi.org/10.1021/jacs.5b11518.

(10) Longwitz, L.; Leveson-Gower, R. B.; Rozeboom, H. J.; Thunnissen, A.-M. W. H.; Roelfes, G. Boron Catalysis in a Designer Enzyme. Nature 2024. https://doi.org/10.1038/s41586-024-07391-3.

(11) Chen, X.-W.; Bo, Z.; Yang, Y. Artificial Boron Enzymes. Nat. Chem. Biol. 2024, 20 (9), 1106–1107. https://doi.org/10.1038/s41589-024-01707-0.

熊葛

投稿者の記事一覧

天然有機化合物の生合成研究を行っております。遺伝子工学から酵素工学、有機化学など、広い分野に興味を持っております。

関連記事

  1. 電子実験ノートSignals Notebookを紹介します ①
  2. 環歪みを細胞取り込みに活かす
  3. 世界初の金属反応剤の単離!高いE選択性を示すWei…
  4. “マブ” “ナブ”…
  5. 金属アルコキシドに新たなファミリー!Naでも切れない絆
  6. ニトリル手袋は有機溶媒に弱い?
  7. オルガネラ選択的な薬物送達法:②小胞体・ゴルジ体・エンドソーム・…
  8. 第26回ケムステVシンポ「創薬モダリティ座談会」を開催します!

注目情報

ピックアップ記事

  1. 化学かるた:元素編ー世界化学年をちなみ
  2. 反応機構を書いてみよう!~電子の矢印講座・その2~
  3. 【クラリベイトウェブセミナー】 新リリース! 今までの研究開発にイノベーションをもたらす新しいソリューション Clarivate Chemistry Researchのご紹介 ー AI技術を搭載したシンプルかつインテリジェントな特許・学術文献情報の活用ツール
  4. アルツハイマー病早期発見 磁気画像診断に新技術
  5. 高純度化学研究所が実物周期標本を発売開始
  6. 京のX線分析装置、国際標準に  島津製・堀場、EU環境規制で好調
  7. メソポーラスシリカ(3)
  8. 重水素 (Deuterium)
  9. 相間移動触媒 Phase-Transfer Catalyst (PTC)
  10. 韮崎大村美術館が27日オープン 女性作家中心に90点展示

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP