[スポンサーリンク]

chemglossary

特殊ペプチド Specialty Peptide

[スポンサーリンク]

特殊ペプチドとは、生体内タンパク質を構成する20種類のL-アミノ酸だけではなく、特殊アミノ酸と呼ばれるD-アミノ酸やN-メチルアミノ酸等を含んだり、大環状骨格を有するペプチドのことである。

小分子化合物と抗体医薬の利点を併せ持ち、またその欠点を克服しうる新たな創薬シーズとして現在大きな注目を集めている。(トップ画像はCurr. Chem. Biol. 2016, 9, 36.より引用)

小分子医薬と抗体医薬:その利点と欠点

医薬開発が目指してきた理想型は「十分な細胞膜透過性を持ち,高い標的選択性と結合能を有する副作用の少ない医薬品」である。しかし,この理想を体現した薬は未だにほとんど存在していない。

現在台頭している大きな医薬カテゴリとして、小分子医薬と抗体医薬の2つが挙げられる。それぞれの特徴は以下のようにまとめられる。

小分子医薬の特徴

(利点)
・免疫原性が少ない。
・細胞膜透過性に優れる。
・経口投与性も付与でき,患者負担が少ない薬剤になり得る。

(欠点)
・標的タンパク質が小分子化合物に適した結合ポケットを有しているとは限らないため、制御可能なタンパク機能が制限される。
たとえばタンパク質間相互作用(protein-protein interaction, PPI)におけるタンパク質間接触面は広く、結合ポケットも浅いものが多い。小分子化合物はこの部分に対して十分な接触面積を確保できないため、PPI阻害に用いることは難しいとされる。
・結合能・特異性も大きくは期待できないため、いわゆるoff-target相互作用による副作用の回避も難しい。

抗体医薬の特徴

(利点)
・標的タンパク質に対して広い面積を接触部位として確保できるため,タンパク質間相互作用を阻害することができる。
・標的選択性・結合能が高く、副作用を誘発する可能性が低い。
(欠点)
・免疫反応による副作用の可能性、薬効の減弱(近年のヒト化技術の発展により改善は見られる)。
・分子サイズが大きく膜透過性が低いため、細胞内タンパク質を標的にすることが難しい。このため、薬剤としての応用範囲に制限が大きい。

従来型ペプチド創薬における課題

これらの中間的性質をもつ物質の一つがペプチドである。ペプチド創薬自体は古くから取り組みがあるものの、細胞膜透過性の問題や、生体内安定性の低さなどの理由で薬剤として多くが送り出されるには至っていない。

一方で、シクロスポリンAやポリミキシンBに代表されるように、医薬品として上市される天然由来のペプチドは存在している。これらに共通している構造的特徴は、非タンパク質性アミノ酸を含み,N末脂肪鎖修飾や大環状骨格などといった特殊な骨格を有する点である。

cyclosporin

これら特殊骨格の存在によって、化合物はペプチダーゼ分解などに対する抵抗性を示す。また環状構造やN-メチル化構造を採ることで骨格的剛直性・脂溶性が増大し,膜透過性の向上や結合能の向上がもたらされる。

specialty_peptide_1

しかしながら、医薬的ポテンシャルの高さに反し、特殊ペプチドは供給法が長らくの課題となっていた。

古典的ペプチド合成では、固相法/液相法などの「化学合成法」が用いられてきた。本手法では非タンパク質性アミノ酸をペプチドに自由に組み込める。しかし、探索用ライブラリーサイズに上限があること、また供給速度などの点でも問題があった。

別法として、翻訳合成などの「生化学的手法」も用いられてきた。すなわち、生体内ペプチド合成機構であるリボソームを用いる合成法である。正確かつ迅速な合成が可能であるが,20種類のタンパク質性アミノ酸のみしか組み込めないという大きな欠点があった。

このような事情から、これまで開発に成功した特殊ペプチド医薬品は、そのほとんどが天然物由来のものに留まっている。

特殊ペプチドライブラリ合成からベンチャー設立まで

東京大学の菅裕明教授は、独自の学術研究を通じ、これらのボトルネックを解消する技術システムの構築に成功した。

すなわち、独自開発したリボザイム技術(フレキシザイム)を用いて、特殊ペプチドをin vitroで翻訳合成可能なシステム(FIT System)を開発した。また、生み出された特殊ペプチドライブラリーを、スクリーニング系および分子進化工学的手法と組み合わせることで、高活性ペプチドの同定を迅速に行えるシステム(RaPID System)の構築にも成功した。

この技術をもとに創薬ベンチャー・ペプチドリームを立ち上げ、特殊ペプチド創薬を強力に推進する、産学連携型研究を遂行している。

関連文献

  1. 特殊環状ペプチドの翻訳合成と医薬品探索への展開[PDF]

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. コンビナトリアル化学 Combinatorial Chemis…
  2. 元素戦略 Element Strategy
  3. 表現型スクリーニング Phenotypic Screening
  4. 分取薄層クロマトグラフィー PTLC (Preparative …
  5. ポリメラーゼ連鎖反応 polymerase chain reac…
  6. 国連番号(UN番号)
  7. 導電性ゲル Conducting Gels: 流れない流体に電気…
  8. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の…

注目情報

ピックアップ記事

  1. DNAを人工的につくる-生体内での転写・翻訳に成功!
  2. エドマン分解 Edman Degradation
  3. 薄くて巻ける有機ELディスプレー・京大など開発
  4. 持続可能な社会を支えるゴム・エラストマー:新素材・自己修復・強靱化と最先端評価技術
  5. 第17回 研究者は最高の実験者であるー早稲田大学 竜田邦明教授
  6. NHC (Bode触媒2) と酸共触媒を用いるα,β-不飽和アルデヒドとカルコンの[4+2]環化反応
  7. メントール /menthol
  8. マイケル付加 Michael Addition
  9. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click反応
  10. 10-メチルアクリジニウム触媒を用いたBaeyer-Villiger酸化反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年5月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP