[スポンサーリンク]

chemglossary

有機触媒 / Organocatalyst

金属を含まず、有機化合物だけで構成される触媒を有機触媒(organocatalyst)と呼びます。

有機合成で用いられてきた触媒は、金属を活性中心とするものがほとんどでした。しかしながら金属の種類によっては、高価・有毒・廃棄困難であったり、水や酸素に不安定であったりと、困った点も少なくありません。

近年では、金属を使わずに、有機分子そのものを触媒として用いる反応開発研究が盛んです。有機分子は一般に、取り扱いや構造のチューニングが金属錯体に比べて簡単であり、安価で環境に優しいなどのメリットがあるとされています。その中には金属触媒ではどうやっても進行させられない反応を触媒するものすらあります。

とはいえ金属触媒に比べまだまだ活性が低いものが多く、実用にこぎ着けられるかどうかは今後の発展次第といえそうです。

日本人研究者では、京都大学の丸岡啓二教授が第一人者です。アミノ酸の不斉合成に用いられる、高活性な不斉相間移動触媒の開発は有名な業績です。

 

関連文献

[1] “Enantioselective Organocatalysis”

Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. DOI: 10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D

The last few years have witnessed a spectacular advancement in new catalytic methods based on metal-free organic molecules. In many cases, these small compounds give rise to extremely high enantioselectivities. Preparative advantages are notable: usually the reactions can be performed under an aerobic atmosphere with wet solvents. The catalysts are inexpensive and they are often more stable than enzymes or other bioorganic catalysts. Also, these small organic molecules can be anchored to a solid support and reused more conveniently than organometallic/bioorganic analogues, and show promising adaptability to high-throughput screening and process chemistry. Herein we focus on four different domains in which organocatalysis has made major advances: 1) The activation of the reaction based on the nucleophilic/electrophilic properties of the catalysts. This type of catalysis has much in common with conventional Lewis acid/base activation by metal complexes. 2) Transformations in which the organic catalyst forms a reactive intermediate: the chiral catalyst is consumed in the reaction and requires regeneration in a parallel catalytic cycle. 3) Phase-transfer reactions: The chiral catalyst forms a host–guest complex with the substrate and shuttles between the standard organic solvent and the second phase (i.e. a solid, aqueous, or fluorous phase in which the organic transformation takes place). 4) Molecular-cavity-accelerated asymmetric transformations: the catalyst can select between competing substrates, depending on size and structure criteria. The rate acceleration of a given reaction is similar to the Lewis acid/base activation and is the consequence of the simultaneous action of different polar functions. Herein it is shown that organocatalysis complements rather than competes with current methods. It offers something conceptually novel and opens new horizons in synthesis.

[2] “In the Golden Age of Organocatalysis”

Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138. DOI: 10.1002/anie.200400650

ncontent

The term “organocatalysis” describes the acceleration of chemical reactions through the addition of a substoichiometric quantity of an organic compound. The interest in this field has increased spectacularly in the last few years as result of both the novelty of the concept and, more importantly, the fact that the efficiency and selectivity of many organocatalytic reactions meet the standards of established organic reactions. Organocatalytic reactions are becoming powerful tools in the construction of complex molecular skeletons. The diverse examples show that in recent years organocatalysis has developed within organic chemistry into its own subdiscipline, whose “Golden Age” has already dawned.

[3]”Asymmetric Organocatalysis”

Houk, K. N.; List, B. (Eds.) Acc. Chem. Res. 2004, 37, 487. DOI: 10.1021/ar040216w

[4] “Asymmetric organocatalysis”

Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. DOI: 10.1039/B415217B

GA

The field of asymmetric organocatalysis is rapidly developing and attracts an increasing number of research groups around the world. Here we present a brief overview of this area, guided by a mechanistic classification. Accordingly, organocatalysts are categorized as either Lewis base, Lewis acid, Brønsted base, or Brønsted acid catalysts.

[5] Kohovský, P.; Malkov, A. V. (Eds.) Tetrahedron Symposia-in-print: Asymmetric Organocatalysis 2006, 62, 243. Link

 

関連書籍

関連リンク

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 抗体触媒 / Catalytic Antibody
  2. Z-スキームモデル Z-Scheme Model
  3. ポットエコノミー Pot Economy
  4. 色素増感型太陽電池 / Dye-sensitized Solar…
  5. カスケード反応 Cascade Reaction
  6. 機能指向型合成 Function-Oriented Synthe…
  7. 二重可変領域抗体 Dual Variable Domain Im…
  8. デンドリマー / dendrimer

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. プリリツェフ エポキシ化 Prilezhaev Epoxidation
  2. 究極のエネルギーキャリアきたる?!
  3. ベンジル保護基 Benzyl (Bn) Protective Group
  4. 神戸製鋼所が特殊合金粉末を開発 金属以外の多様な材料にも抗菌性付加
  5. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用
  6. 新人化学者の失敗ランキング
  7. 宮沢賢治の元素図鑑
  8. n型半導体特性を示すペリレン誘導体
  9. 新世代鎮痛剤の販売継続を 米政府諮問委が勧告
  10. シリンドロシクロファン生合成経路の解明

関連商品

注目情報

注目情報

最新記事

専門家要らず?AIによる圧倒的高速なスペクトル解釈

第169回目のスポットライトリサーチは、東京大学大学院工学系研究科博士課程・清原慎さんにお願いしまし…

日本プロセス化学会2018ウインターシンポジウム

ご案内日本プロセス化学会(JSPC)が年2回主催するシンポジウムは、最新のプロセス化学の知識を習…

フラーレンの“籠”でH2O2を運ぶ

過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。分子内包フラ…

北エステル化反応 Kita Esterification

概要ルテニウム触媒存在下、エチニルエチルエーテル試薬を脱水剤として用い、カルボン酸とアルコールか…

一人二役のフタルイミドが位置までも制御する

N-ヒドロキシフタルイミドを用いる逆マルコフニコフ型のヒドロアミノ化が報告された。遷移金属触媒および…

ジアゾニウム塩が開始剤と捕捉剤を“兼務”する

アリールジアゾニウム塩を用いたプレニルカルバマート/ウレアのシクロアミノジアゾ化反応が開発された。入…

PAGE TOP