[スポンサーリンク]

chemglossary

有機触媒 / Organocatalyst

[スポンサーリンク]

金属を含まず、有機化合物だけで構成される触媒を有機触媒(organocatalyst)と呼びます。

有機合成で用いられてきた触媒は、金属を活性中心とするものがほとんどでした。しかしながら金属の種類によっては、高価・有毒・廃棄困難であったり、水や酸素に不安定であったりと、困った点も少なくありません。

近年では、金属を使わずに、有機分子そのものを触媒として用いる反応開発研究が盛んです。有機分子は一般に、取り扱いや構造のチューニングが金属錯体に比べて簡単であり、安価で環境に優しいなどのメリットがあるとされています。その中には金属触媒ではどうやっても進行させられない反応を触媒するものすらあります。

とはいえ金属触媒に比べまだまだ活性が低いものが多く、実用にこぎ着けられるかどうかは今後の発展次第といえそうです。

日本人研究者では、京都大学の丸岡啓二教授が第一人者です。アミノ酸の不斉合成に用いられる、高活性な不斉相間移動触媒の開発は有名な業績です。

 

関連文献

[1] “Enantioselective Organocatalysis”

Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. DOI: 10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D

The last few years have witnessed a spectacular advancement in new catalytic methods based on metal-free organic molecules. In many cases, these small compounds give rise to extremely high enantioselectivities. Preparative advantages are notable: usually the reactions can be performed under an aerobic atmosphere with wet solvents. The catalysts are inexpensive and they are often more stable than enzymes or other bioorganic catalysts. Also, these small organic molecules can be anchored to a solid support and reused more conveniently than organometallic/bioorganic analogues, and show promising adaptability to high-throughput screening and process chemistry. Herein we focus on four different domains in which organocatalysis has made major advances: 1) The activation of the reaction based on the nucleophilic/electrophilic properties of the catalysts. This type of catalysis has much in common with conventional Lewis acid/base activation by metal complexes. 2) Transformations in which the organic catalyst forms a reactive intermediate: the chiral catalyst is consumed in the reaction and requires regeneration in a parallel catalytic cycle. 3) Phase-transfer reactions: The chiral catalyst forms a host–guest complex with the substrate and shuttles between the standard organic solvent and the second phase (i.e. a solid, aqueous, or fluorous phase in which the organic transformation takes place). 4) Molecular-cavity-accelerated asymmetric transformations: the catalyst can select between competing substrates, depending on size and structure criteria. The rate acceleration of a given reaction is similar to the Lewis acid/base activation and is the consequence of the simultaneous action of different polar functions. Herein it is shown that organocatalysis complements rather than competes with current methods. It offers something conceptually novel and opens new horizons in synthesis.

[2] “In the Golden Age of Organocatalysis”

Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138. DOI: 10.1002/anie.200400650

ncontent

The term “organocatalysis” describes the acceleration of chemical reactions through the addition of a substoichiometric quantity of an organic compound. The interest in this field has increased spectacularly in the last few years as result of both the novelty of the concept and, more importantly, the fact that the efficiency and selectivity of many organocatalytic reactions meet the standards of established organic reactions. Organocatalytic reactions are becoming powerful tools in the construction of complex molecular skeletons. The diverse examples show that in recent years organocatalysis has developed within organic chemistry into its own subdiscipline, whose “Golden Age” has already dawned.

[3]”Asymmetric Organocatalysis”

Houk, K. N.; List, B. (Eds.) Acc. Chem. Res. 2004, 37, 487. DOI: 10.1021/ar040216w

[4] “Asymmetric organocatalysis”

Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. DOI: 10.1039/B415217B

GA

The field of asymmetric organocatalysis is rapidly developing and attracts an increasing number of research groups around the world. Here we present a brief overview of this area, guided by a mechanistic classification. Accordingly, organocatalysts are categorized as either Lewis base, Lewis acid, Brønsted base, or Brønsted acid catalysts.

[5] Kohovský, P.; Malkov, A. V. (Eds.) Tetrahedron Symposia-in-print: Asymmetric Organocatalysis 2006, 62, 243. Link

 

関連書籍

関連リンク

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. メタンハイドレート Methane Hydrate
  2. 光薬理学 Photopharmacology
  3. クロスカップリング反応 cross coupling react…
  4. 特殊ペプチド Specialty Peptide
  5. 二重可変領域抗体 Dual Variable Domain Im…
  6. 深共晶溶媒 Deep Eutectic Solvent
  7. アトムエコノミー Atom Economy
  8. 徹底比較 特許と論文の違い ~その他編~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 薬学会年会も付設展示会キャンペーンやっちゃいます
  2. 「引っ張って」光学分割
  3. 芳香族フッ素化合物の新規汎用合成法
  4. 積水化学工業、屋外の使用に特化した養生テープ販売 実証実験で耐熱・対候性を訴求
  5. アジリジンが拓く短工程有機合成
  6. SchultzとKay: 米スクリプス研究所のトップへ
  7. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!
  8. ノーベル化学賞メダルと科学者の仕事
  9. 小学2年生が危険物取扱者甲種に合格!
  10. ニューマン・クワート転位 Newman-Kwart Rearrangement

関連商品

注目情報

注目情報

最新記事

米国へ講演旅行へ行ってきました:Part IV

3部作で終わろうと思いながら、書くことが多すぎて終われませんでした。前回から2ヶ…

二水素錯体 Dihydrogen Complexes

水素分子がサイドオン型で金属中心に近づくと、二水素錯体を形成することができる。こうして形成した二水素…

分析化学科

お申込み・詳細はこちら◇分析化学科 (定員16名)本研修では「ものづくり企業」の品質管理等で…

多角的英語勉強法~オンライン英会話だけで満足していませんか~

国際学会で発表するにも、論文を書くにも、研究室の留学生と飲みにいくにも英語は必要です。しかし、それぞ…

ペプチドの革新的合成

第215回のスポットライトリサーチは、中部大学総合工学研究所分子性触媒センター助教・村松渉先生にお願…

年収で内定受諾を決定する際のポイントとは

転職活動の終盤で複数の企業から内定を獲得した際、「年収が決め手となって内定を受諾…

Chem-Station Twitter

PAGE TOP