[スポンサーリンク]

chemglossary

有機触媒 / Organocatalyst

[スポンサーリンク]

金属を含まず、有機化合物だけで構成される触媒を有機触媒(organocatalyst)と呼びます。

有機合成で用いられてきた触媒は、金属を活性中心とするものがほとんどでした。しかしながら金属の種類によっては、高価・有毒・廃棄困難であったり、水や酸素に不安定であったりと、困った点も少なくありません。

近年では、金属を使わずに、有機分子そのものを触媒として用いる反応開発研究が盛んです。有機分子は一般に、取り扱いや構造のチューニングが金属錯体に比べて簡単であり、安価で環境に優しいなどのメリットがあるとされています。その中には金属触媒ではどうやっても進行させられない反応を触媒するものすらあります。

とはいえ金属触媒に比べまだまだ活性が低いものが多く、実用にこぎ着けられるかどうかは今後の発展次第といえそうです。

日本人研究者では、京都大学の丸岡啓二教授が第一人者です。アミノ酸の不斉合成に用いられる、高活性な不斉相間移動触媒の開発は有名な業績です。

 

関連文献

[1] “Enantioselective Organocatalysis”

Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. DOI: 10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D

The last few years have witnessed a spectacular advancement in new catalytic methods based on metal-free organic molecules. In many cases, these small compounds give rise to extremely high enantioselectivities. Preparative advantages are notable: usually the reactions can be performed under an aerobic atmosphere with wet solvents. The catalysts are inexpensive and they are often more stable than enzymes or other bioorganic catalysts. Also, these small organic molecules can be anchored to a solid support and reused more conveniently than organometallic/bioorganic analogues, and show promising adaptability to high-throughput screening and process chemistry. Herein we focus on four different domains in which organocatalysis has made major advances: 1) The activation of the reaction based on the nucleophilic/electrophilic properties of the catalysts. This type of catalysis has much in common with conventional Lewis acid/base activation by metal complexes. 2) Transformations in which the organic catalyst forms a reactive intermediate: the chiral catalyst is consumed in the reaction and requires regeneration in a parallel catalytic cycle. 3) Phase-transfer reactions: The chiral catalyst forms a host–guest complex with the substrate and shuttles between the standard organic solvent and the second phase (i.e. a solid, aqueous, or fluorous phase in which the organic transformation takes place). 4) Molecular-cavity-accelerated asymmetric transformations: the catalyst can select between competing substrates, depending on size and structure criteria. The rate acceleration of a given reaction is similar to the Lewis acid/base activation and is the consequence of the simultaneous action of different polar functions. Herein it is shown that organocatalysis complements rather than competes with current methods. It offers something conceptually novel and opens new horizons in synthesis.

[2] “In the Golden Age of Organocatalysis”

Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138. DOI: 10.1002/anie.200400650

ncontent

The term “organocatalysis” describes the acceleration of chemical reactions through the addition of a substoichiometric quantity of an organic compound. The interest in this field has increased spectacularly in the last few years as result of both the novelty of the concept and, more importantly, the fact that the efficiency and selectivity of many organocatalytic reactions meet the standards of established organic reactions. Organocatalytic reactions are becoming powerful tools in the construction of complex molecular skeletons. The diverse examples show that in recent years organocatalysis has developed within organic chemistry into its own subdiscipline, whose “Golden Age” has already dawned.

[3]”Asymmetric Organocatalysis”

Houk, K. N.; List, B. (Eds.) Acc. Chem. Res. 2004, 37, 487. DOI: 10.1021/ar040216w

[4] “Asymmetric organocatalysis”

Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. DOI: 10.1039/B415217B

GA

The field of asymmetric organocatalysis is rapidly developing and attracts an increasing number of research groups around the world. Here we present a brief overview of this area, guided by a mechanistic classification. Accordingly, organocatalysts are categorized as either Lewis base, Lewis acid, Brønsted base, or Brønsted acid catalysts.

[5] Kohovský, P.; Malkov, A. V. (Eds.) Tetrahedron Symposia-in-print: Asymmetric Organocatalysis 2006, 62, 243. Link

 

関連書籍

関連リンク

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 薄層クロマトグラフィ / thin-layer chromato…
  2. 生物学的等価体 Bioisostere
  3. 逆転写ポリメラーゼ連鎖反応(RT-PCR; reverse tr…
  4. 色素増感型太陽電池 / Dye-sensitized Solar…
  5. ラマン分光の基礎知識
  6. エレクトロクロミズム Electrochromism
  7. グリーンケミストリー Green Chemistry
  8. MOF-5: MOF の火付け役であり MOF の代名詞

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 分子の聖杯カリックスアレーンが生命へとつながる
  2. 大鵬薬品、米社から日本での抗癌剤「アブラキサン」の開発・販売権を取得
  3. アンモニアで走る自動車 国内初、工学院大が開発
  4. 原子3個分の直径しかない極細ナノワイヤーの精密多量合成
  5. 第43回―「均質ナノ粒子の合成と生命医学・触媒への応用」Taeghwan Hyeon教授
  6. ReadCubeを使い倒す(3)~SmartCiteでラクラク引用~
  7. ポンコツ博士研究員の海外奮闘録 ケムステ異色連載記
  8. マクコーマック反応 McCormack Reaction
  9. 即戦力のコンパクトFTIR:IRSpirit
  10. 超微量紫外可視分光光度計に新型登場:NanoDrop One

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年10月
« 9月   11月 »
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに&hellip;)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン・対面併設|進化する高分子材料 表面・界面制御 Advanced コース

開講期間●令和4年 2月  14日(月)、17日(木):基礎編●       21日(月)、…

ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮

第 360回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科 博士課…

吉岡里帆さんが出演する企業ブランド広告の特設サイト「DIC岡里帆の研究室」をリニューアル

DIC株式会社は、⼥優の吉岡⾥帆さんを起⽤した企業ブランド広告 「化学⼤好き、DIC 岡⾥帆(ディー…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP