[スポンサーリンク]

一般的な話題

高分子ってよく聞くけど、何がすごいの?

[スポンサーリンク]

この記事では、高分子の〇〇がスゴイ!(個人的見解)をお伝えします。

私たちの身の回りにある多くのものが高分子であるということは皆さんもよくご存知でしょうか。ポリエステルや絹や木綿、ナイロンなど私たちが着ている洋服の多くは高分子です。お肉、お刺身、お芋など私たちが食べている食べ物も高分子です。住む家においてもまた同じ。床も壁も天井も畳もコンクリートもペンキも、これまた全て高分子です。そして忘れちゃいけない、私たちの肉体そのものが極めて精巧な高分子でできているのです。何もこれは人間だけに限った話ではありません。犬でも猫でもスギの木も蚕も、生きとし生けるものすべてが高分子でできているのです。衣食住に関わるもの、私たちを含む動植物たち、これらを形成するのがまさに高分子なのですからさぞかし奥が深いことでしょう。どれだけ奥が深いものなのかお楽しみ頂くために、これから皆さんを高分子の世界にご案内いたします。

 

目次

1.ちょっと寄り道~高分子でないもの~

2.高分子の〇〇がすごい!

3.熱的挙動&溶解性(〇〇のネタバレ)をさらに詳しく

4.高分子のすごいところはそれだけじゃない

 

1.ちょっと寄り道~高分子でないもの~

さっそく高分子の世界にご案内したいところですが、さっきから話を聞いていると森羅万象すべてのものが高分子であるように思えてきてしまうので、高分子でないものに一体どんなものがあるのか、まずはそこから見ていきましょう。

名前から想像がつくと思いますが、高分子でないものは低分子といいます。低分子もまた、さまざまであり、空気を構成する窒素や酸素、水、硫酸、ガソリン、塩、砂糖などもみな低分子です(図1)。化学的に説明すると、”原子”が数個~100個つながり分子量が数100程度になったものを「低分子」、数1,000個以上の”原子”がつながって分子量が10,000以上になったものを「高分子」といいます(図2)。高分子のもとをたどればみな低分子なのです。筋肉の源、タンパク質はアミノ酸という低分子からできています。ナイロンは当時、「石炭と水と空気で作られ、鋼鉄よりも強く、クモの糸より細い」というキャッチフレーズで売り出されました。では低分子と高分子の境界はどこなのでしょうか。これについて明確な答えはなく、分子量が10,000以上のものを便宜上高分子として扱っています。高分子の分子量というのは見かけ上の平均分子量であって、その中には9,990のものも11,000のものも色々混ざっており、平均が大体10,000以上のものを高分子と呼ぶことに決めたのです。むしろ大切なのは高分子らしい性質、つまり今回のテーマ、高分子のすごいところを備えているかどうかです。では高分子らしい性質とは何なのでしょう。

図1.身の回りの高分子、低分子

 

図2.高分子と低分子の違い

 

2.高分子の〇〇がすごい!1)

先程紹介した低分子の代表例、水は0℃で凍り、100℃で沸騰します。電気分解すれば酸素と水素に一定割合で分解されるので、工業的に酸素や水素をつくるのにも利用されます。このように、低分子はすべて一定割合の原子からできていることがわかります。しかも、ある決まった温度で溶けだしたり沸騰したり、融点や沸騰をもっています。さらに詳しく言うと、各圧力に対応する沸点を示し、水なりベンゼンなりに溶かすとさらりと溶け、ある分量まではきれいに溶けるという、溶けやすさの程度を示す一定の溶解度も持っています。塩にしても砂糖にしてもいずれも低分子なので水の中にいれるとある濃さまではきれいに溶けます。

ところが、高分子というものはそうはいきません。木の葉を水に溶かそうと思ってもさらりとは溶けず、温度を上げてもなお溶けだすことはなく、それが液体に変わり、ある温度で沸騰するというようなことも勿論ありません(図3,図4)。実はこれが高分子のすごいところ、大きな鍵だったのです(つまり、高分子の熱的挙動&溶解性がすごい!)。このことが高分子と低分子の性質の大きな違いを示し、高分子が私たちの生活で色々な役割を担っているのです。

天然に存在する高分子の中でも、タンパク質や核酸、多糖など生体内でつくられる生体高分子は、形態を維持したり、生体内の化学反応の制御や遺伝情報の記憶伝達をするなど、生命体の機能を支えています。そういったものがもし、ある温度になるとどろりと溶けてしまったり、もう少し温度が上がると蒸発してしまったり、雨に濡れてさらりと溶けてしまったりしてはたまったもんじゃありません。そんなことのないように、私たち動植物はちゃんと高分子でできているのです。生き物というものは全くよくできているなと感心するでしょう。このような神業を人間がまねて作り出したのが、今や生活に欠かせないナイロンやポリエステルなどの合成高分子です。なぜ高分子が低分子と同じような融点や沸点を示さず、また溶解しないのかについては、次の章でさらっとお伝えします。

図3.低分子と高分子の熱的挙動

 

図4.低分子と高分子の溶解性

 

3.熱的挙動&溶解性をさらに詳しく2)

まず熱的挙動から説明します。低分子には一般的に、固体、液体、気体という物質の三態があり、融点と沸点が存在しますが、高分子ではまた別の熱的挙動が観測されます。大まかにまとめるとガラス状態、ゴム状態、液体状態の三つです。

ここで少し話はそれますが、高分子は分子鎖が不規則に並んだ非晶性高分子と、分子鎖が規則的に並んで結晶になった結晶性高分子に分類されます。低分子の場合、分子の大きさも小さく、構造もあまり複雑でないのですべての分子が規則的に並んだ結晶にすることができますが、高分子の場合には、それぞれの分子鎖がとても長いうえに分子量に分布があるので、すべてを規則的に並べることは不可能です(図4)。何百人、何千人もの人間を整列させることを想像してみてください。どれだけ難しいか想像にかたくないでしょう。したがって、高分子はふつう結晶領域と非晶領域が混在しています。

図4.低分子と高分子

 

ガラスの状態に近い固体では、温度を上げていくと、ある温度でまず非晶領域の分子鎖が部分的に動き始めます。この部分的な分子鎖の動きをミクロブラウン運動といい、このときの温度をガラス転移点(Tg)といいます。さらに温度を上げていくと分子鎖の動きは活発になりますが、分子鎖が絡み合って外見は固体のままになります。この状態をゴム状態といい、さらに結晶領域の融点に達すると高分子は液体に変化します(図6)。このような性質によって、私たちはある温度で液体になったり気体になったりせずにいられるのです。

図6.高分子のガラス転移点

 

次は、溶解性についてです。まず、衣類繊維としても活躍するセルロースと、セルロースを構成する繰り返し単位グルコースを見比べてみましょう。グルコースの場合は、分子間で水素結合が形成され規則正しく配列された結晶構造を取りますが、この水素結合はそれほど強いものではありません。したがって、水中に入れると水との強い相互作用によって結晶が壊れ水に溶解します。一方、セルロースは、グルコースの脱水縮合によってできた高分子で、水には溶けません。高分子鎖が規則正しく配列し、さらにこの高分子鎖間に強い分子間相互作用が働くので、水と親和性の高いヒドロキシ基を有していますが、水もこの強い分子間相互作用を切ることができません(図7)。このような性質によって、私たちは雨に濡れたりプールで泳いでるうちに溶けてしまったりせずに済むのです。

図7.グルコースとセルロース 3)4)

 

4.高分子のすごいところはそれだけじゃない

もちろん、熱的挙動&溶解性という性質だけで高分子が大切な機能を担っているわけではありまん。他にも、力学的強度ゴム弾性軽量さ耐衝撃性透明性吸水性保水性など様々です。私たちが目が見えるのも、車や飛行機に乗れるのも、これらのおかげなのです。

次回以降の記事では、ここではお話しきれなかった他の性質のすごいところ、高分子の構造や合成について細かく説明したいと思います。

 

参考文献

1)神原周, 高分子の世界, コロナ社, 1961, p1~8

2)小澤美奈子, 高分子学会編 基礎高分子科学, 東京化学同人, 2016, p2~9

3)グルコース: 主要なエネルギー源となる糖 (ultrabem.com)

4)セルロース | 構造生物薬学 (iwate-med.ac.jp)

 

[amazonjs asin=”4807907549″ locale=”JP” title=”基礎高分子科学演習編”][amazonjs asin=”4807906356″ locale=”JP” title=”基礎高分子科学”]
Avatar photo

Monica

投稿者の記事一覧

高分子材料を合成している修士1年生。
本を読むのが大好きです。サイエンス系から、小説、純文学、歴史系まで色んなテーマに興味があります。個人的おススメはサピエンス全史。科学に興味のある方でも楽しめると思います。
実は運動も大好き。フルマラソンもよく走っていたのですが、今はコロナ禍でほとんど中止になってしまいました。

関連記事

  1. 化学者のためのエレクトロニクス講座~めっきの原理編~
  2. 【書籍】化学探偵Mr. キュリー
  3. マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用…
  4. mi3 企業研究者のためのMI入門③:避けて通れぬ大学数学!MIの道具と…
  5. 硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築
  6. 【十全化学】核酸医薬のGMP製造への挑戦
  7. 複雑化合物合成にも適用可能なC-H酸化反応
  8. 金属-金属結合をもつ二核ランタノイド錯体 -単分子磁石の記録を次…

注目情報

ピックアップ記事

  1. フェティゾン試薬 Fetizon’s Reagent
  2. オゾンホールのさらなる縮小を確認 – アメリカ海洋大気庁発表
  3. 大学院生が博士候補生になるまでの道のり【アメリカで Ph.D. を取る –Qualification Exam の巻 前編】
  4. 第五回 超分子デバイスの開発 – J. Fraser Stoddart教授
  5. 「薬学の父」長井博士、半生を映画化へ
  6. ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮
  7. 水から電子を取り出す実力派触媒の登場!
  8. 独自の有機不斉触媒反応を用いた (—)-himalensine Aの全合成
  9. 第九回 タンパク質に新たな付加価値を-Tom Muir教授
  10. 恋する創薬研究室

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年3月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP