[スポンサーリンク]

化学者のつぶやき

免疫応答のシグナル伝達を遮断する新規な免疫抑制剤CPYPP

[スポンサーリンク]

 

免疫抑制作用を持った低分子化合物が、新たに発見されました。この物質は、免疫応答のスイッチをオンからオフに切り換えるタンパク質標的とし、シグナル経路を遮断することで薬理活性を示します。移植手術後の拒絶反応を防ぐ免疫抑制剤や、自己免疫疾患の治療薬として、有望なリード化合物となるのか、期待が集まります。

タンパク質間相互作用を指標に、93925種類の化合物ライブラリーからケミカルスクリーニングで発見された「4-[30-(2”-chlorophenyl)-2′-propen-1′-ylidene]-1-phenyl-3,5-pyrazolidinedione」…縮めてCPYPP[1] と呼ばれる低分子化合物が、今回の主役です。グラムスケールの化学合成は、次のような反応経路で達成されています[1]  

 

GREEN0006101

グラムスケールで化学合成に成功[1]

   

低分子化合物CPYPPの標的分子は、DOCK2タンパク質と呼ばれる遺伝子産物です[1]   。このタンパク質は、免疫応答の細胞内シグナル伝達において、グアニンヌクレオチド交換因子(GEF)として機能することが知られています[2]。

Gタンパク質(G protein)とは、GTP(グアノシン三リン酸)をGDP(グアノシン二リン酸)に分解する酵素活性(GTPase活性)を持ったシグナル伝達分子の総称です。GTP結合型のGタンパク質は、GTPase活性化タンパク質(GTPase activating protein; GAP)と直接に相互作用することで酵素活性を増し、速やかにGDP結合型に変換されます。一方、GDP結合型のGタンパク質にグアニンヌクレオチド交換因子(Guanine nucleotide exchange factor; GEF)が相互作用すると、結合していたGDPが新しくGTPに取りかえられ、Gタンパク質はGTP結合型に変化します。GTPase活性化タンパク質(GAP)とグアニンヌクレオチド交換因子(GEF)の仲介のもと、Gタンパク質はGTP型とGDP型との間で変換され、細胞内のシグナル伝達をオンオフします。このようなGタンパク質が仲介するシグナル伝達は、細胞内でよく登場する典型的なものであり、ここで説明が足りないと感じた人は生化学の教科書を参照のほど

 

GREEN0006102

Gタンパク質はスイッチとして機能

Gタンパク質には、三量体Gタンパク質に属するものと、比較的サイズの小さなRho(RAS HOMOLOG)ファミリーのものがあります。DOCK2タンパク質の標的は、Rhoファミリーに分類されるGタンパク質です。

GREEN0006103

DOCK2タンパク質(青)と Rhoファミリーに属するメンバーのひとつRacタンパク質(緑)のなかま

タンパク質立体構造データはPDB(Protein Data Bank)より

低分子化合物CPYPPの標的タンパク質であるDOCK2タンパク質は、本来Gタンパク質のスイッチをオフからオンに切り換える役割があります。免疫応答のシグナル伝達では、リンパ球T細胞の細胞膜に存在するサイトカイン受容体と抗原受容体が、DOCK2タンパク質の上流にあることが知られています。また、Toll様受容体もDOCK2タンパク質の上流にあるとされます。低分子化合物CPYPPは、免疫応答のシグナル伝達を仲介するDOCK2タンパク質と直接に結合することで機能を阻害し、本来はスイッチが入るべきであった下流のシグナル伝達を遮断して免疫抑制作用を示します。DOCK2タンパク質を標的とすることで、免疫応答に関連した遺伝子発現の変化や、細胞骨格成分をはじめとするタンパク質の挙動の変化を抑え込み、低分子化合物CPYPPは免疫細胞の活動を妨げます。

 

 

GREEN0006104

低分子化合物CPYPPはDOCK2タンパク質に作用して免疫応答のシグナル伝達を遮断

低分子化合物CPYPPとDOCK2タンパク質が直接に相互作用して結合することは、生化学の方法(ELISAなど)に加えて、特殊な核磁気共鳴(saturation transfer difference nuclear magnetic resonance; STD-NMR)の方法でも検出されています[1]  。リガンドとして結合する低分子化合物CPYPPの水素原子のシグナルが、標的として相互作用したDOCK2タンパク質の影響を受け、シグナルが弱まる様子(saturation; SAT)が、核磁気共鳴(NMR)のスペクトルとして観察できます。 

GREEN0006105

論文[1]より

 

化合物ライブラリーから単離するだけでなく、その化合物が何ものか同定した上で、そのふたつの間を埋める特徴づけが鮮やかにまとめられています。

Green0012345

実際にCPYPPが医薬品として改良され、従来の免疫抑制剤と併用され医療の質は上がっていくのか、今後に期待が集まります。

 

参考URL

参考文献

  1.  “Blockade of Inflammatory Responses by a Small-Molecule Inhibitor of the Rac Activator DOCK2” Akihiko Nishikimi et al. Chem. Biol. 2012 DOI: 10.1016/j.chembiol.2012.03.008
  2. “Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration” Yoshinori Fukui Nature 2001 DOI: 10.1038/35090591

 

関連書籍

 

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 地域の光る化学企業たち-2
  2. アンモニアの安全性あれこれ
  3. ケミストリー四方山話-Part I
  4. ネイチャー論文で絶対立体配置の”誤審”
  5. 本当の天然物はどれ?
  6. ノルゾアンタミンの全合成
  7. 研究職の転職で求められる「面白い人材」
  8. 書物から学ぶ有機化学 1

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の強力ツール~
  2. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成
  3. 小6、危険物取扱者乙種全類に合格 「中学で理科実験楽しみ」
  4. 辻 二郎 Jiro Tsuji
  5. ジェニファー・ダウドナ Jennifer Doudna
  6. Callipeltosideの全合成と構造訂正
  7. バリー・シャープレス Karl Barry Sharpless
  8. 計算化学:DFT計算って何?Part II
  9. 光触媒-ニッケル協働系によるシステイン含有ペプチドのS-アリール化
  10. 有機ELディスプレイの最新技術【終了】

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに向けて~

第282回のスポットライトリサーチは、大阪府立大学 大学院理学系研究科(松坂研究室)・山本大貴さんに…

第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

第133回の海外化学者インタビューはジェイソン・チン教授です。ケンブリッジMRC分子生物学研究所のタ…

アメリカ大学院留学:卒業後の進路とインダストリー就活(3)

前回・前々回の記事では、アメリカのPhD取得後の進路について、一般的な進路やインダストリー就活の流れ…

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された。本手法…

化学者のためのエレクトロニクス講座~次世代の通信技術編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

Chem-Station Twitter

PAGE TOP