[スポンサーリンク]

化学者のつぶやき

光有機触媒で開環メタセシス重合

[スポンサーリンク]

みなさんは開環メタセシス重合(ROMP : Ring-opening metathesis polymerization)をご存知でしょうか?

その名の通り、2005年のノーベル賞受賞反応である“開環メタセシス反応”を使って“ポリマーを作る(重合)”反応のことを言います。ROMPは30年以上も前から研究されており、その多くは比較的狭い分子量分布のポリマーを合成することが可能で、官能基許容性にも優れています(図1)。そのため様々な機能をもつポリマー、例えばポリノルボルネンやポリオクテニレンが合成・製品化されるなど、ROMPはポリマー合成における定番ツールの1つとなっています。

 

図1.金属触媒を用いた開環メタセシス重合(従来法) (出典:論文より改変)

図1.金属触媒を用いた開環メタセシス重合(従来法)(出典:論文より改変)

 

ROMPが汎用性の高い優れたポリマー合成法に成長したきっかけは、ルテニウムやモリブデンなどの金属を含む高活性なメタセシス触媒の登場にあったと言っても過言ではありません。

しかし、実はこれは諸刃の剣であり、合成したポリマーに残った金属触媒はポリマーの物理的性質に影響を与えるだけでなく、時には生体に対して毒となります。そのため、ポリマーを合成した後に何工程もかけて金属を取り除く必要がありました。この問題に解を与えるべく、ワシントン大学のBoydstonらは金属触媒を用いない開環メタセシス重合反応を初めて報告しました。開発のキーワードは“ラジカルカチオンの発生”“光レドックス触媒”です。

 

“Metal-Free Ring-Opening Metathesis Polymerization”

Ogawa, K. A.; Goetz, A. E.; Boydston, A. J.

J. Am. Chem. Soc. 2015, 137, 1400. DOI: 10.1021/ja512073m

 

開発のキーワードその1:ラジカルカチオンの発生

開発のヒントとなったのが、2006年に東京農工大学の千葉一裕教授らのグループによって報告された電気化学的手法によるアルケンのクロスメタセシス反応でした[1](図2)。

この反応ではまず、陽極で1電子酸化されたビニルエーテルがラジカルカチオンを生じ、これと末端アルケンとが4員環のラジカルカチオン中間体を生成します。ここで生じたラジカルカチオン中間体がフラグメント化すると、目的とするクロスメタセシス反応の生成物を得ることができます。しかしながら、フラグメント化する前に1電子還元されるとシクロブタン環が生成し目的物は得られません。

 

図2.電気化学的手法を用いたアルケンのクロスメタセシス反応 (論文より改変)

図2.電気化学的手法を用いたアルケンのクロスメタセシス反応(出典:論文より改変)

 

Boydstonらは

「もし、副生し得るシクロブタン環に非常に高い歪エネルギーがかかっていたら、目的とするクロスメタセシス反応のみが進行するのではないか」

と予想しました。そもそもシクロブタン環はおよそ109°の結合角をもつsp3炭素を90°に“無理矢理”曲げているわけですから、シクロブタン環には高い歪エネルギーがかかっています。これを更に歪ませれば結合を形成する(保つ)ことができないので副反応を抑えることができるはずです。

また、4員環のラジカルカチオン中間体からフラグメント化して生じる2つのアルケンを鎖で繋いでおけば(つまり環状オレフィンを用いれば)、その1端はアルケン、もう1端は新たなラジカルカチオンとなります。生じたラジカルカチオンは別のアルケンと再度反応することができるため、これを連続的に繰り返すことで“金属触媒を使わないROMP”が実現できます(図3)。

 

図3.金属触媒を用いない開環メタセシス重合反応の開発戦略 (出典;論文より改変)

図3.金属触媒を用いない開環メタセシス重合反応の開発戦略(出典;論文より改変)

 

開発のキーワードその2:光レドックス触媒の利用

では、Boydstonらはどうやってビニルエーテルにラジカルカチオンを発生させたのでしょう?その答えは光レドックス触媒の利用でした。著者らはビニルエーテルを一電子酸化しラジカルカチオンを発生させるのに適切な酸化電位をもつピリリウム塩に注目しました。

有機合成化学において、光照射によって励起されたピリリウム塩は一電子酸化剤として働き様々な反応を進行させることが既に知られています(図4)。また、光レドックス触媒は光照射のオン・オフでラジカルの生成を制御できるといった特徴をもち、重合反応に適用することで重合度の制御が容易に行える、といったメリットが有ります。

 

図4.光励起されたピリリウム塩 (出典:論文より改変)

図4.光励起されたピリリウム塩(出典:論文より改変)[2]

Boydstonらの考えは見事に当たり、ノルボルネンのジクロロメタン溶液に0.03%のピリリウム–テトラフルオロボレート塩を添加し青色LEDを照射したところ、重合反応が進行しPNBが生成することを確認しました(図5)。モノマー(ノルボルネン)とピリリウム塩との比率を変えることで分子量の制御(最大57.4 kDa)も可能で、分散度は1.3-1.7程度と金属触媒(第1世代Grubbs触媒)を用いたROMPに匹敵する良い値を示しました。

 

図5.ピリリウム塩を用いた開環メタセシス重合反応 (出典:論文より改変)

図5.ピリリウム塩を用いた開環メタセシス重合反応(出典:論文より改変)

 

先に述べたとおり、光レドックス触媒を用いる利点は重合反応の進行を光照射のオン・オフで制御できることにあります。この反応も例外ではなく、光照射下では重合反応は進行し、光照射を止めると反応は進行しません。その後再び光を照射すると重合が進行しますので、光の照射時間で重合度を制御することも可能です。詳しくは原著論文を見てみて下さい。

惜しむらくは、現段階で適用可能な基質がノルボルネンに限られるところでしょうか。また、今回の手法で合成されたポリマーはシス体とトランス体とが1:2で混ざっています。このような立体異性体の混合比はポリマーの性質に大きく影響しますので、それらを選択的に作り分けることができればさらに明るい未来が広がるでしょう(現在、金属メタセシス触媒を用いると可能です)。

いずれにしても、本研究はROMPに新しい戦略をもたらした画期的なものであると言えます。これを機に、より汎用性の高い手法がでてくることに期待です。

 

参考文献

  1. Miura, T.; Kim, S.; Kitano, Y.; Tada, M.; Chiba, K. Angew. Chem., Int. Ed. 2006, 45, 1461. DOI:10.1002/anie.200503656
  2.  Miranda, M. A.; García, H. Chem. Rev. 1994, 94, 1063. DOI:10.1021/cr00028a009

 

関連書籍

[amazonjs asin=”3527334246″ locale=”JP” title=”Handbook of Metathesis, 3 Volume Set”][amazonjs asin=”1243760354″ locale=”JP” title=”Ring Opening Metathesis Polymerization of 1-Substituted Cyclobutene Derivatives and Its Application to Antimicrobials: From Homopolymers to Alternatin”]

 

外部リンク

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 7th Compound Challengeが開催されます!【エ…
  2. 研究者の活躍の場は「研究職」だけなのだろうか?
  3. 第6回ICReDD国際シンポジウム開催のお知らせ
  4. フラーレン〜ケージを拡張、時々、内包〜
  5. どっちをつかう?:in spite ofとdespite
  6. CRISPRの謎
  7. ポンコツ博士の海外奮闘録XIX ~博士,日本を堪能する①~
  8. 有機合成化学協会誌2020年2月号:ナノポーラス スケルトン型金…

注目情報

ピックアップ記事

  1. 福井鉄道と大研化学工業、11月に電池使い車両運行実験
  2. モナリザの新たな秘密が化学分析によって判明
  3. 2018年ケムステ人気記事ランキング
  4. 有機合成化学協会誌2023年5月号:特集号「日本の誇るハロゲン資源: ハロゲンの反応と機能」
  5. ケムステイブニングミキサー2016へ参加しよう!
  6. 令和4年度(2022年度)リンダウ・ノーベル賞受賞者会議派遣事業募集開始のお知らせ
  7. アレクサンダー・リッチ Alexander Rich
  8. 第21回次世代を担う有機化学シンポジウム
  9. リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発
  10. 二重可変領域を修飾先とする均質抗体―薬物複合体製造法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年2月
 1
2345678
9101112131415
16171819202122
232425262728  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP