[スポンサーリンク]

化学者のつぶやき

フラーレン〜ケージを拡張、時々、内包〜

[スポンサーリンク]

トリアジン誘導体とNフェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。分子を内包したフラーレンに本手法を適用して物性を調査することで、実際に内部空間の拡張が認められた。

フラーレンのケージ拡張

炭素の同素体の一つであるフラーレンは、その球状構造に起因する優れた電子受容能や高い化学反応性、分子の包接能などの魅力的な性質をもつ[1]。フラーレンのケージが拡張できれば、より多数の分子や大きい分子の内包が可能となるため、新規物性の発現や新たな貯蔵媒体の創製が期待できる。しかし、実際にフラーレンを拡張した研究例は少ない。ケージ拡張が初めて達成されたのは、1991年のWudlらによる報告である(図1A)[2]。彼らはカルベンの付加とレトロ[2+2+2]反応によりC60からC61へとケージ拡張に成功したが、ケージが拡張されたフラーレンは質量分析および分光分析による検出にとどまった。また2003年にはRubinらにより、C60にテトラジン誘導体を作用させ、続くラジカル反応によりC62へとケージ拡張する手法が開発された[3]。既存の拡張法では、フラーレンのケージに新たに組み込める原子の数や種類が限られるため、新たなケージ拡張法の開発が望まれていた[4]
一方で、京都大学の小松、村田らはフラーレンの化学変換技術として分子手術法を開発している。分子手術法とはフラーレンを化学的に切開し、開口部より金属原子や小分子を挿入した後、再び開口部を化学的に縫合する手法である(図1B)。本手法を用いてH2Oを内包したフラーレンH2O@C60を始めとし、種々の原子や分子を内包させたフラーレン(内包フラーレン)が合成されている[5,6]
今回、村田らはトリアジン誘導体およびN-フェニルマレイミドを用いたフラーレンC60のケージ拡張法を開発し、ケージが拡張されたフラーレンC64NやC65Nの合成に成功した(図1C)。本手法はC70および内包フラーレンにも適用可能である。村田らはRubinらのケージ拡張法に基づき、テトラジンの代わりにトリアジンを用いることで、ケージのより大きな拡張を可能にした。また、ケージを拡張した内包フラーレンのNMR測定から、内部空間の大小を比較した。

図1. (A) フラーレンのケージ拡張の例 (B) 分子手術法の一例 (C) 本手法

 

“Cage-Expansion of Fullerenes”
Zhang, S.; Hashikawa, Y.; Murata, Y. J. Am. Chem. Soc.2021, 143,12450–12454.
DOI: 10.1021/jacs.1c05778

論文著者の紹介


研究者:Yasujiro Murata
研究者の経歴:
1993 B.S., Kyoto University, Japan
1995 M.S., Kyoto University, Japan (Prof. N. Sugita)
1998 Ph.D., Kyoto University, Japan (Prof. K. Komatsu)
1999 Assistant Professor Kyoto University, Japan (Prof. K. Komatsu)
2006 Associate Professor, Kyoto University, Japan
2009– Professor, Kyoto University, Japan
研究内容:小分子を内包したフラーレンの有機合成、有機太陽電池用新規材料開発、電荷輸送性材料の開発

論文の概要

著者らは、C60とトリアジン誘導体から合成されたフラーレン誘導体1N-フェニルマレイミド(PMI)を作用させ、C65Nケージ2を収率73%で得た(図2A)。2にEt3Nを用いた場合、C64Nケージ3およびC65Nケージ4をそれぞれ収率46%、47%で与えた。TsOH·H2Oを用いた酸性条件下ではC64Nケージ5のみが生成した。同様の方法によりC75Nケージも合成されている。
本反応の反応機構は図2Bのように想定された。フラーレン誘導体1とPMIのDiels–Alder反応により中間体IM1が生成後、レトロ[2+2+2]反応により中間体IM2となる。続くC–N結合形成反応により2を与える。塩基性条件下でのイミドの加水分解により中間体IM3が生成、続く脱炭酸により中間体IM4となる。最後にIM4のシクロプロパン環が開環して3が生成する。
著者らはケージ拡張した内包フラーレンの物性を調査している(図2C)。まず、X線結晶構造解析によりH2O内包フラーレンH2O@C75Nの構造を明らかにした。水分子はC75Nケージ内で、下側 (H2O-I)と上側 (H2O-II)の2ヶ所に局在し、その比は0.70:0.30であった。DFT計算から下側の位置(H2O-I)が上側の位置(H2O-II)よりもフラーレンとの相互作用が大きく安定であることが確認できた。また、ケージ拡張したフラーレンの内部空間の大きさを比較するため、H2内包フラーレンの1Hのスピン緩和時間(T1)をNMRで測定した。H2とN原子間の距離が近いほど、両者に働く磁気双極子相互作用が強くなり、1Hのスピンは速やかに緩和されるため、スピン緩和時間(T1)は小さくなる。測定の結果、炭素数の大きい内包フラーレンほどT1が大きくなったため、H2@(C59N)2 < H2@C64N < H2@C65N の順で、より大きな内部空間をもつことが示された。

図2. (A) ケージ拡張の条件 (B) 推定反応機構 (C) H2O@C75Nの結晶構造 (D) 各H2内包フラーレンにおける1Hのスピン緩和時間(T1)の温度変化(論文から引用、一部改変)

 

以上、フラーレンC60, C70をC65N, C75Nへと化学変換する手法が報告された。本手法は内包フラーレンのケージ拡張にも適用でき、スピン緩和時間の測定から内部空間の拡張を確認した。今後、さらなるフラーレンのケージ拡張法が確立され、望みの大きさと構造を有するケージが入手可能になることを期待する。

 参考文献

  1. Rodríguez-Fortea, A.; Balch, A. L.; Poblet, J. M. Endohedral Metallofullerenes: A Unique Host-Guest Association. Chem. Soc. Rev. 2011, 40, 3551–3563. DOI: 10.1039/C0CS00225A
  2. Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, Ö. Systematic Inflation of Buckminsterfullerene C60: Synthesis of Diphenyl Fulleroids C61 to C66. Science 1991, 254, 1186–1188. DOI: 1126/science.254.5035.1186
  3. Qian, W.; Chuang, S.-C.; Amador, R. B.; Jarrosson, T.; Sander, M.; Pieniazek, S.; Khan, S. I.; Rubin, Y. Synthesis of Stable Derivatives of C62: The First Nonclassical Fullerene Incorporating a Four–Membered Ring. J. Am. Chem. Soc. 2003, 125, 2066–2067. DOI: 10.1021/ja029679s
  4. Ishitsuka, M. O.; Sano, S.; Enoki, H.; Sato, S.; Nikawa, H.; Tsuchiya, T.; Slanina, Z.; Mizorogi, N.; Liu, M. T. H.; Akasaka, T.; Nagase, S. Regioselective Bis-Functionalization of Endohedral Dimetallofullerene, La2@C80: Extremal La-La Distance. J.  Am. Chem. Soc. 2011, 133, 7128−7134. DOI: doi.org/10.1021/ja200903q
  5. Kurotobi, K.; Murata, Y. A Single Molecule of Water Encapsulated in Fullerene C60. Science 2011, 333, 613–616. DOI: 1126/science.1206376
  6. Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Open-cagefullerenes: Towards the Construction of Nanosized Molecular Containers. Chem. Soc. Rev. 2010, 39, 817−844. DOI: 10.1039/b913766a

関連書籍

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 経験と資格を生かしたいが実務経験なし。 そんな30代女性の再就職…
  2. リンダウ会議に行ってきた①
  3. エステルからエーテルへの水素化脱酸素反応を促進する高活性固体触媒…
  4. タミフルをどう作る?~インフルエンザ治療薬の合成~
  5. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  6. 有機化学実験基礎講座、絶賛公開中!
  7. 有機無機ハイブリッドペロブスカイトはなぜ優れているのか?
  8. ACSで無料公開できるかも?論文をオープンにしよう

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Part I
  2. アシル系保護基 Acyl Protective Group
  3. (+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成
  4. 使っては・合成してはイケナイ化合物 |第3回「有機合成実験テクニック」(リケラボコラボレーション)
  5. 第173回―「新たな蛍光色素が実現する生細胞イメージングと治療法」Marina Kuimova准教授
  6. ダイハツなど、福島第一原発廃炉に向けハニカム型水素安全触媒を開発 自動車用を応用
  7. ケムステ版・ノーベル化学賞候補者リスト【2022年版】
  8. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part III
  9. 大日本インキが社名変更 来年4月1日から「DIC」に
  10. ヨードラクトン化反応 Iodolactonization

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP