[スポンサーリンク]

一般的な話題

ユニークな名前を持つ配位子

[スポンサーリンク]


機能性金属錯体にとって不可欠たる要素の一つに、「配位子(リガンド)」があります。

これは金属元素にくっつき(配位し)、その性質・機能を実に千差万別なものへと変えてしまえる化合物です。特に精密たる機能チューニングを行うには、配位子のチューニングが必要不可欠となります。金属それ自体の修飾場所・修飾手法は限られているため、有機化合物で出来た配位子を様々に変えてやる必要があるからです。

さて、性能の良い配位子には特別な通称がつけられ、化学者の間で共有されてゆきます。多くの場合化合物名(IUPAC名)の略称、もしくは開発者人名から取った通称が付けられるのが通例ですが、中には配位子デザインの「コンセプト」や、配位子がもたらす未来像、すなわち「夢」を託した名前を持つものがあります。

そんなオリジナリティに富む名前を持つ配位子とその由来を知ることは、現場にいる化学者たちの思想が垣間見えてなかなか興味深いものです。今回はそういうものをご紹介しましょう。

TunePHOS(チュンフォス) [1]

tunephos.gifXumu Zhang (Ratgers大学) らによって開発されたキラルリン配位子です。

上図を見ての通り、様々な長さを持つ「アルキルひも」で背中の酸素原子同士が結ばれた形をとっています。この「ひも」の長さを長くしてやると、それに伴って金属を挟む角度(配位挟角; bite angle)が大きくなる仕組みになっています。つまり「配位挟角が調節可能(“tunable” bite angle)」な配位子であり、TunePHOSという名前はそこからつけられています。

このBite Angleというパラメータは、なかなかにバカに出来ません。これがわずかに数度違うだけで、触媒回転数・不斉識別能などの触媒性能がケタ違いになることも珍しくないのです。

どれほどの大きさのBite Angleを持つ配位子に、どんな金属を組み合わせれば、優れた触媒になるのだろうか?――これは反応形式や金属触媒によって大きく異なり、実際試してみるまで分からない、というのが現実です。それゆえBite Angleを自分好みに調節し、反応に応じて使い分けができるコンセプトは、大変重宝されうる考え方になるわけです。

 

SEGPHOS(セグフォス) [2]

2016-01-19_14-39-33

高砂香料工業によって開発されたキラルリン配位子です。
ノーベル賞不斉配位子・BINAP(バイナップ)と似ていますが、反応によってはBINAPよりずっと良い性能を示します。
2016-01-19_14-40-29

このSEGPHOSという名前は、SEaGull(カモメ)+PHOSphine(リン)にちなんでいるそうです。

なぜ”カモメ”なのか?SEGPHOS命名の逸話については有機化学美術館さんに詳しい記事がありますので、そちらも参照くださると有り難いのですが、かの有名な短編小説「かもめのジョナサン」にはこんな一文があります。

―『もっとも高く飛ぶカモメが、 もっとも遠くを見通せるのだ』―

BINAPを超えるほど高性能を誇る配位子こそが、新たな領域を見通す力を持つ――そういう”化学者の夢”を託してつけられた名前の一つだといえそうです。

ちなみにSEGPHOS誘導体の一つであるDTBM-SEGPHOSという不斉配位子は、活性金属中心を覆ってしまえるほどの嵩高い置換基(di-t-butylmethoxyphenyl;DTBM基)を持っています。このため立体識別能が高く、なおかつ金属触媒活性低減の一因となりうる「多量体形成」を阻害する効能も併せ持ちます。BINAP・SEGPHOSで全く収率・選択性の出ない反応形式であっても、DTBM-SEGPHOSを使えばあっさりクリアできてしまうことすらあります。

しかし同様の設計思想に基づくDTBM-BINAPという配位子は、筆者の知る限り合成例がありません(参考)。おそらく多くの人がターゲットにしていたはずですが、何らかの理由で合成がとても難しいのでしょう。・・・ややマニアックなポイントながら、「誘導体化の柔軟性」という観点でもSEGPHOS骨格にはメリットがあるのでしょうね。

 

TRAP(トラップ)[3]

TRAP.gif一昔前に開発された配位子ですが、これは過去にほとんど例のなかった「トランス型キレート配位」を実現せしめた不斉配位子です。そのTRAns-chelating chiral diPhosphine ligand を略して「TRAP」と名づけられたようです。

金属をがっちりと捕捉(トラップ)しそうな形と機能が、なんとも名前にマッチしています。こういうネーミングセンスは素晴らしい。

ちなみに筆者自身、院生時代にこの配位子をごりごり作った経験があり、そういう意味でも印象強い配位子の一つだったりします。複雑に見えて、合成法自体は実はそこまで難しくないのです。市販されてないので知名度は低めですが、オリジナリティ高い日本産配位子の一つだと思えます。

 

SMAP(スマップ)[4]

2016-01-19_14-43-16

ごく最近開発された新しい単座リン配位子です。トリメチルホスフィンなどと酷似した「コンパクトな配位環境」を持ちながらも、いくつかの反応形式において、より優れたパフォーマンスを示します。

Silicon-constrained Monodentate AlkylPhosphine を略したもののようですが、こちらは失礼ながら、まったく無理やりな名前にしか見えません。しかし、その略称自体はインパクト満点です・・・それがなぜかは、日本の皆さんであればお分かりですよね!

この名前がでかでかと載った論文を見たとき、「ぜってー狙いまくってるよなコレわ・・・」などとラボのみんなでわいわいがやがや言ってたものです。少なくとも日本人に容易に浸透しうる名前、というのは間違いなさそう。とはいえ余計な背景理解が無くとも、単純に呼び易くて良い名前だとは思います。気の利いた名前が化学界での市民権確保に一役買っているというのは、この例だけからも分かると言うものですね。

TRAPとはまた違った意味で凄いネーミングセンスですが、SMAPの開発者たる澤村正也先生(北大・理学部)  は、実はTRAP合成論文の1st Authorでもあるという・・・なるほど一朝一夕の積み重ねで出てくるセンスではないということか!まったくもって奥が深い世界ですね(笑)

 

関連文献

  1.  Zhang, Z.; Qian, Hu; Longmire, J.; Zhang, X. J. Org. Chem. 2000, 65, 6223. doi:10.1021/jo000462v
  2. Shimizu, H. et al. Acc. Chem. Res. 2007, 40, 1385.
  3. (a) Sawamura, M.; Hamashima, H.; Ito, Y. Tetrahedron: Asymmetry 1991, 2, 593. doi:10.1016/S0957-4166(00)86110-8 (b) Ito, Y. et al. Bull. Chem. Soc. Jpn. 1997, 70, 2807.
  4. (a) Sawamura, M. et al. Org. Lett. 2003, 5, 2672. doi:10.1021/ol0349099 (b) Sawamura, M. et al. Organometallics 2008, 27, 5494. doi:10.1021/om8005728

 

関連書籍

[amazonjs asin=”4759802045″ locale=”JP” title=”化学者たちのネームゲーム―名付け親たちの語るドラマ〈1〉”][amazonjs asin=”4759802088″ locale=”JP” title=”化学者たちのネームゲーム―名付け親たちの語るドラマ〈2〉”][amazonjs asin=”1848162073″ locale=”JP” title=”Molecules With Silly Or Unusual Names”]

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 蛍光色素を分子レベルで封止する新手法を開発! ~蛍光色素が抱える…
  2. 「ねるねるねるね」はなぜ色が変わって膨らむのか?
  3. BulkyなNHCでNovelなButadiyne (BNNB)…
  4. オルガネラ選択的な薬物送達法:②小胞体・ゴルジ体・エンドソーム・…
  5. 第27回ケムステVシンポ『有機光反応の化学』を開催します!
  6. α,β-不飽和イミンのγ-炭素原子の不斉マイケル付加反応
  7. 特許取得のための手続き
  8. 2017年(第33回)日本国際賞受賞者 講演会

注目情報

ピックアップ記事

  1. アルメニア初の化学系国際学会に行ってきた!②
  2. 産総研より刺激に応じて自在に剥がせるプライマーが開発される
  3. 生きた細胞内でケイ素と炭素がはじめて結合!
  4. こんなサービスが欲しかった! 「Chemistry Reference Resolver」
  5. ウラジミール・ゲヴォルギャン Vladimir Gevorgyan
  6. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ②
  7. ポンコツ博士の海外奮闘録⑥ 〜博士,アメ飯を食す。おうち系お肉編〜
  8. 抗生物質の誘導体が神経難病に有効 名大グループ確認
  9. ジブロモイソシアヌル酸:Dibromoisocyanuric Acid
  10. シャープレス不斉ジヒドロキシル化 Sharpless Asyemmtric Dihydroxylation (SharplessAD)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP