[スポンサーリンク]

化学者のつぶやき

超大画面ディスプレイ(シプラ)実現へ

[スポンサーリンク]

 10月下旬と前の話ですが、「FPD (Flat Panel Display) International 2009」(パシフィコ横浜)にて篠田プラズマ 篠田傳会長の講演を聴講しました。化学領域の話題とは、少し離れますが研究開発の進め方に関して、大変有意義な内容でしたので、概略を紹介させて頂きたいと思います。

 

 

篠田氏は、プラズマディスプレイの開発という化学とは異分野の第一人者ですが、ガイアの夜明けに出演されたこともあり、ご存知の方も多いかもしれません。講演ではベンチャー篠田プラズマ株式会社を立ち上げ、PTA(プラズマチューブアレイ)技術を実用化した体験をお話頂きました。

 

shinoda.GIF

 

篠田氏は富士通でPDP開発を行っていたとき、ディスプレイの未来はどうなるか?を考え、「産業・商業用の巨大化」を考えたとのことでした。対角インチ100インチオーバーとなる場合、重量・消費電力・製造設備など現状技術からのブラッシュアップでは不可能であり、新技術の開発が必要であると開発を始めたそうです。しかし、富士通がPDPから撤退。援助を受けつつ独立し、一緒に富士通を退職した技術者・研究者と篠田プラズマを設立しました。

新技術を必要とする新しい超大画面ディスプレイは、大きいだけではなく、次の3点が必要になると開発の方向性を決めました。

 

超巨大ディスプレイ開発

体感・体験できるディスプレイ (その場に行ったような、その場にいるような臨場感 → 人のサイズを超えた2 x 3 mのサイズを目標)

人にやさしい (ディスプレイ・キーボード・マウスなどのインターフェースが不要であり、声や指-タッチパネル-や動作で動く)

環境にやさしい (低消費電力だけでなく、低製造・低運搬・低設置エネルギー)

 

その解として氏は、画像エレメントを貼り合わせるPTAを考えました。画像エレメントをガラスチューブにすることで、フィルム上の電極に張り合わせディスプレイにし、①を解決することにしました。画素を張り合わせるため、軽く、ディスプレイを設置する場所へ運びやすく、設置は巨大な一枚のディスプレイを張るよりも容易、さらに曲面表示さえも可能になりました。製造工程では画素を作成するので省スペース、そしてガラスチューブ内に発光体を封入するためクリーンルームも不要となり③の低製造・低運搬・低設置エネルギーとなりました。技術面は駆け足で話されていましたが、発光効率や材料などかなりの苦労が感じられました。(シプラの技術説明はこちら

 

PTAの事業化に向けて

PTAを事業化するために、氏は①入り口市場 ②死の谷を避ける ③積極的な出展や発表を意識されたとのことでした。

「入り口市場」とは氏の造語で、LCDが小さなく個人用途の画面サイズから拡大、またPDPが巨大な公衆的用途の画面サイズから市場を拡大したことを例として、競合が少ない市場=「入り口市場」から技術をブラッシュアップし、徐々に市場を拡大する戦略を意味します。PTAの場合、画面サイズがPDPと、ビル壁の大型広告など使われるLEDアレイとの間のサイズに競合がなく、入り口市場として算入が成功すると考えていたそうです。(実際、OLEDに関してですが、経営サイドからすると量がでない。メーカーサイドからするとLCDの投資設備を回収しないことには切り替えづらい等の話を聞いたりしたことがあります。)

②死の谷を避けるとは、技術開発と量産化のための生産技術の時間的な谷とのことであり、篠田プラズマでは、両者の開発を平行して進め、また、③対外発表を積極的に行い、エンジニアに次回の発表までに達成すべき目標を提示することで、短期間で開発から実用化を達成したと説明されていました。

実用化し、明石市立天文科学館にてシプラ製品第一号が展示されています。

研究テーマの選定・律速段階の把握と解決・目標の設定と非常に示唆に富んだ講演でした。氏は、私みたいな年寄りでも、ベンチャーとして結果を出していくことで、日本の技術者に元気を与えたいとの内容を述べていて、非常にエネルギッシュであり、刺激をうけました。

 

(画像は篠田プラズマ株式会社のHPから転載させて頂きました)

lcd-aniso

投稿者の記事一覧

企業にてディスプレイ関連材料の開発をしております。学生時代はヘテロ原子化学を専攻していました。私のできる範囲で皆様に興味を持っていただける 話題を提供できればと思います。

関連記事

  1. ヘテロ原子を組み込んだ歪シクロアルキン簡便合成法の開発
  2. ユニークな名前を持つ配位子
  3. オンライン授業を受ける/するってどんな感じ? 【アメリカで Ph…
  4. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  5. もう別れよう:化合物を分離・精製する|第5回「有機合成実験テクニ…
  6. アルカリ土類金属触媒の最前線
  7. 電子のやり取りでアセンの分子構造を巧みに制御
  8. 【無料】化学英語辞書がバージョンアップ!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 含フッ素カルボアニオン構造の導入による有機色素の溶解性・分配特性の制御
  2. 薄くて巻ける有機ELディスプレー・京大など開発
  3. Pfizer JAK阻害薬tofacitinib承認勧告
  4. 東レ先端材料シンポジウム2011に行ってきました
  5. Nature 創刊150周年記念シンポジウム:ポスター発表 募集中!
  6. 浜地 格 Itaru Hamachi
  7. 暑いほどエコな太陽熱冷房
  8. 経営戦略を成功に導く知財戦略【実践事例集】
  9. iPhoneやiPadで化学!「デジタル化学辞典」
  10. ペイン転位 Payne Rearrangement

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP