[スポンサーリンク]

化学者のつぶやき

Arborisidineの初の全合成

[スポンサーリンク]

インドレニンアルカロイドである(+)-arborisidineの初の全合成が達成された。二つの不斉四級炭素を含む全置換シクロヘキサノン骨格の構築が鍵となる。

インドレニンアルカロイド

高度に縮環した構造をもつstrictamine(1)やarboridinine(2)などのインドレニンアルカロイドの全合成を通じ、新たな反応や合成戦略が確立され、有機合成化学は進展してきた(図1A)(1)。2016年にマレーシアのコプシアアルボレアの木から単離、構造決定された(+)-arborisidine(3)も同様にユニークな縮環構造を有するインドレニンアルカロイドである(2)3の最大の構造的特徴としては、二つの不斉四級炭素を含む全ての炭素が置換されたシクロヘキサノン骨格を有することが挙げられる。この二つの不斉四級炭素のうち一つは含窒素四級炭素であり、関連する化合物において類似の構造は皆無である。これまでに一例3の合成研究が報告されているが、この全置換シクロヘキサノン骨格の形成には至っておらず、いかに本骨格を形成するかが3の全合成において課題となる(3)
シカゴ大学のSnyder教授らは以前、4の6-endo-dig環化により効率的に環形成を行うことで1の形式全合成を達成している(図1B)(1a)。今回、この合成法を全置換シクロヘキサノン骨格の形成に応用展開することで、短工程で3の初の全合成を達成した。彼らの3の逆合成解析は以下の通りである(図1C)。3は合成終盤でジエン体6の位置選択的化学修飾を経てピロリジン環を形成し合成することとした。6は鍵反応となるエンイン7の6-endo-dig環化反応により構築できると考えた。

図1. (A)四環性インドールアルカロイドの例 (B)1の形式全合成における鍵反応 (C)Arborisidineの逆合成解析

 

Total Synthesis of (+)-Arborisidine
Zhou, Z.; Gao, A. X.; Snyder, S. A. J. Am. Chem. Soc.2019, 141, 7715.
DOI: 10.1021/jacs.9b03248

論文著者の紹介


研究者:Scott A. Snyder
研究者の経歴:
1995-1999 B.A. Williams College, USA (Prof. J. Hodge Markgraf)
1999-2004Ph.D, The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
2004-2006 Posdoc, Harvard University, USA (Prof. E. J. Corey)
2006-2011 Assistant Professor, Department of Chemistry, Columbia University
2011-2013 Associate Professor, Department of Chemistry, Columbia University
2013-2015 Associate Professor, Department of Chemistry, The Scripps Research Institute-                 Florida
2015-           Professor, Department of Chemistry, The University of Chicago
研究内容:ハロゲン化試薬の開発・天然有機化合物の全合成・カスケード反応の開発

論文の概要

D-トリプトファンメチルエステル(8)を本合成の出発物質とし、初めに2,3-ブタジオンとのPictet–Spengler反応により9を得た。エステルをシアノ基に変換した後、還元的脱シアノ化により11を合成した。なお、8の代わりにトリプタミンを出発物質とすれば、1工程で11をラセミ合成できることが示されている。次に、11をプロパルギル化し、その後TFAAを用いて脱離反応と二級アミンの保護をし、12とした。続いて、鍵反応である、金触媒を用いたエンイン12の6-endo-dig環化により収率よく14を得た。ここから、ピロリジン環の形成とジエン部位の位置選択的な官能基化ができれば6 の合成は完了する。ジエン14を、求電子的臭素化剤を用いることでエキソオレフィンを位置およびジアステレオ選択的にブロモ化し15とした。15は精製せずにパラジウム触媒を用いたメトキシカルボニル化反応条件に適用でき、14から収率56%でエステル16を合成した。その後、MagnusやShenviらの報告したMn触媒とシランを用いる還元反応を行うことで1,4-還元が位置選択的に進行し所望の17を得た(4)17の粗生成物を直接NaBH4/MeOH条件に付すことでアミン上のTFA保護基の除去と続くラクタム化を進行させ、18とした。最後にBH3、アミンオキシド、ヨードソベンゼン、そしてDMPを順次作用させることでオレフィンの水和とラクタムの還元、インドレニンの再形成などの官能基変換を行い、3の全合成を達成した。

Arborisidineの全合成

以上、3の初の全合成を達成した。高度に置換されたシクロヘキサノン骨格の形成法は、他の類似のアルカロイドの合成に応用されることが期待される。

参考文献

  1. (a)Smith, M. W.; Zhou, Z.; Gao, A. X.; Shimbayashi, T.; Snyder, S. A. Org. Lett.2017,19, 1004. DOI:10.1021/acs.orglett.6b03839 (b)Zhang, Z.; Xie, S.; Cheng, B.; Zhai, H.; Li, Y. J. Am. Chem. Soc.2019, 141, 7147. DOI:10.1021/jacs.9b02362
  2. Wong, S.-P.; Chong, K.-W.; Lim, K.-H.; Lim, S.-H.; Low, Y.-Y.; Kam, T.-S. Org. Lett.2016, 18, 1618. DOI:10.1021/acs.orglett.6b00478
  3. Chen, Z.; Xiao, T.; Song, H.; Qin, Y. J. Org. Chem.2018, 38, 2427. DOI:10.6023/cjoc201805025
  4. (a)Magnus, P.; Warning, M. J.; Scott, D. A. Tetrahedron Lett .2000, 41, 9731. DOI:1016/S0040-4039(00)01728-7 (b) Iwasaki, K.; Wan, K. K.; Oppedisano, A.; Crossley, S. W. M.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 1300. DOI :10.1021/ja412342g
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. リチウムイオン電池の課題のはなし-1
  2. カーボンナノチューブを有機色素で染めて使う新しい光触媒技術
  3. セミナー「マイクロ波化学プロセスでイノベーションを起こす」
  4. 合成化学者十訓
  5. 日本国際賞受賞者 デビッド・アリス博士とのグループミーティング
  6. なぜ青色LEDがノーベル賞なのか?ー雑記編
  7. 電子デバイス製造技術 ーChemical Times特集より
  8. 美麗な分子モデルを描きたい!!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ターボグリニャール試薬
  2. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  3. 天然イミンにインスパイアされたペプチド大環状化反応
  4. アントニオ・M・エチャヴァレン Antonio M. Echavarren
  5. 『ほるもん-植物ホルモン擬人化まとめ-』管理人にインタビュー!
  6. 岸 義人 Yoshito Kishi
  7. メールのスマートな送り方
  8. 発見が困難なガンを放射性医薬品で可視化することに成功
  9. 「非晶質ニッケルナノ粒子」のユニークな触媒特性
  10. 『国際化学オリンピック』 日本代表が決定

関連商品

注目情報

注目情報

最新記事

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

ジャーナル編集ポリシーデータベース「Transpose」

およそ3000誌のジャーナル編集ポリシーをまとめたデータベース「Transpose」が、この6月に公…

Chem-Station Twitter

PAGE TOP