[スポンサーリンク]

化学者のつぶやき

あなたの合成ルートは理想的?

[スポンサーリンク]

 

aiming for the ideal synthesis.gif

 Aiming for the Ideal Synthesisというタイトルの論文がスクリプス研究所のBaran教授らによって報告されました。有機化合物の合成ルートがどのくらい理想的なのかを数値化する、といったちょっと変わった試みがなされていますので紹介します。

Aiming for the Ideal Synthesis
Gaich, T.; Baran, P. S. J. Org. Chem. 2010, ASAP. DOI: 10.1021/jo1006812

 

合成ルートが理想的かどうかの評価基準である”ideality”は、以下の式によって算出しています。

ideality.gif

 

この式に登場するconstruction reactionstrategic redox reactionについて簡単に説明します。

Construction Reaction…いわゆる骨格構築反応であり、炭素-炭素結合あるいは炭素-ヘテロ原子結合を形成する反応。
Strategic Redox Reaction…目的物に存在する官能基を直接構築する反応であり、不斉酸化・還元やC-H酸化反応。

これら以外の反応は以下のように分類されます。

Nonstrategic Redox Reaction…エステルをアルコールに還元するなどの酸化・還元反応。
Functional Group Interconversion…官能基変換。
Protecting Group Manipulation…保護基の付け外し。

これだけでは少しわかりにくいので、以前ブログでも取り上げられたビニグロールの全合成を例に挙げてみたいと思います。

 

vinigrol1.gif
 
 まず、ケトンをトリフラートに変換してからPdカップリングを行う2工程は、それぞれ④Functional Group Interconversion、①Construction Reactionに該当します。TBS基の脱保護工程は⑤Protecting Group Manipulationです。四酸化オスミウムによってオレフィンをジオールに変換する工程は、目的物と同じ立体化学を有する水酸基を導入しているため②Strategic Redox Reactionであり、続く位置選択的な水酸基の酸化は③Nonstrategic Redox Reactionとなります。

 

紙の上では①と②の反応だけで全ての化合物の骨格、官能基を組み立てることができます。一方、③、④、⑤の反応は、官能基の反応性を変えるなどの都合上、やむを得ず行う反応であり、目的とする骨格を形作る上では必要のない反応です。idealityは全工程における①、②の反応の占める割合、すなわち、いかに目的物の形作りに反応を用いているか、を示すパラメーターというわけです。

 

Baranらは実際に、彼らがこれまでに合成した全ての化合物のidealityを算出しています(論文参照)。ずらりと化合物を並べられてしまうと(しかもほとんどが難関天然物)、多少自慢話のように見えてしまうのは私だけでしょうか(笑)。ここで注意しておかなければならないのは、化合物によって構造の複雑さは異なるため、idealityによって異なる化合物の合成ルートの優劣をつけることはできないという点です。また、精製の容易さや出発原料の値段などの様々な要素が絡んできますので、必ずしもidealityに固執せずに合成ルートを決定する必要があるでしょう。

 

  骨格構築反応後の粗生成物をそのまま保護・脱保護反応に用いるなどのケースでは、1工程のConstruction Reactionが行われたものとして計算しているようで、idealityによる合成ルートの評価には若干曖昧なところもあります。しかしながら、合成ルートの良し悪しの判断は非常に難しく、idealityのような判断基準となる数値があればとても楽しいですし、合成ルートを見直す良い機会となるのではないでしょうか。

The following two tabs change content below.
らぱ

らぱ

現在、博士課程にて有機合成化学を学んでいます。 特に、生体分子を模倣した超分子化合物に興味があります。よろしくお願いします。
らぱ

最新記事 by らぱ (全て見る)

関連記事

  1. 電流励起による“選択的”三重項励起状態の生成!
  2. 創薬化学における「フッ素のダークサイド」
  3. ブラウザからの構造式検索で研究を加速しよう
  4. 優れた研究者は優れた指導者
  5. リンダウ会議に行ってきた③
  6. 化学素人の化学読本
  7. Reaxys Ph.D Prize 2014受賞者決定!
  8. プレプリントサーバー:ジャーナルごとの対応差にご注意を【更新版】…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ニコラウ祭り
  2. スクラウプ キノリン合成 Skraup Quinoline Synthesis
  3. スコット・ミラー Scott J. Miller
  4. 近くにラジカルがいるだけでベンゼンの芳香族性が崩れた!
  5. ノーベル賞化学者に会いに行こう!「リンダウ・ノーベル賞受賞者会議」応募開始
  6. マラカイトグリーン /Malachite Green
  7. キャサリン・M・クラッデン Cathleen M. Crudden
  8. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  9. 【2分クッキング】シキミ酸エスプレッソ
  10. ポリアクリル酸ナトリウム Sodium polyacrylate

関連商品

注目情報

注目情報

最新記事

「あの人は仕事ができる」と評判の人がしている3つのこと

仕事を辞めて、転職をしたいと思う動機の一つとして、「今の会社で評価されていない」という理由がある。し…

光で2-AGの量を制御する

ケージド化合物を用いた2-AG量の操作法が初めて開発された。2-AG量を時空間的に操作することができ…

葉緑素だけが集積したナノシート

第235回のスポットライトリサーチは、立命館大学 民秋研究室で博士研究員をされていた、庄司 淳(しょ…

第38回「分子組織化の多様な側面を理解する」Neil Champness教授

長らく更新が止まっていましたが、海外化学者インタビュー再開しました。Nature Chemistry…

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

“つける“と“はがす“の新技術―分子接合と表面制御

お申込み・詳細はこちら日程2020年1月9日(木)・10日(金)定員20名  先着順…

Chem-Station Twitter

PAGE TOP