[スポンサーリンク]

化学者のつぶやき

ルイス酸/塩基でケイ素を操る!シリレンの原子価互変異性化

[スポンサーリンク]

ケイ素錯体がルイス酸/塩基に応答して原子価互変異性を示す例が初めて報告された。遷移金属触媒の代替や配位子への応用が期待される。

ケイ素の原子価互変異性

原子価互変異性とは、外部刺激に応答する中心元素/配位子間での分子内電子移動により、中心元素の価数が変化する現象である(図1A)[1]。この現象は、電子デバイスなどの機能性材料への応用が期待されている。遷移金属元素でよく知られている一方で、典型元素における原子価互変異性は報告例が少ない[1]。中でも低原子価のケイ素における原子価互変異性は、最近2例報告されたのみである。最初の報告は2020年Driessらの報告であり、ビス(シリレニル)-ortho-カルボラン配位子を有する単原子0価ケイ素錯体が還元により原子価互変異性を示した(図1B)[2]。2例目は、2021年に岩本らによって報告された環状(アルキル)(アミノ)シリレンを配位子として用いた単原子0価ケイ素錯体である(図1C)[3]。この錯体は固相と液相によって2つの電子状態が可逆的に切り替わる。このように、原子価互変異性を示すケイ素の化学は未だ開拓されたばかりである。

今回カールスルーエ工科大学のRoeskyらは、2012年にSoらにより報告されたI価およびIII価の異なる価数をもつ2つのケイ素が結合したモノシリレン1に着目した(図1D)[4]。著者らは、モノシリレン1がルイス酸/塩基に応答して原子価互変異性を示すことを見いだした。

図1. (A) 原子価互変異性 (B) 原子価互変異性を示した最初のケイ素錯体 (C) 固相-液相間で可逆的な原子価互変異性を示すケイ素錯体 (D) ルイス酸/塩基による可逆的な原子価互変異性を示すケイ素錯体 (Dipp = 2, 6-diisopropylphenyl)

 

“Stimuli Responsive Silylene: Electromerism Induced Reversible Switching between Mono- and Bis-silylene”
Yadav, R.; Sun, X.; Köppe, R.; Gamer, M. T.; Weigend, F.; Roesky, P. W. Angew. Chem., Int. Ed. 2022, e202211115. DOI: 10.1002/anie.202211115

論文著者の紹介

研究者: Peter W. Roesky

研究者の経歴:

1992–1994 Ph.D., Technical University of Munich, Germany (Prof. W. A. Herrmann)
1995–1996 Postdoc, Northwestern University, USA (Prof. T. J. Marks)
1996–1999 Habilitation, University of Karlsruhe, Germany (Prof. Dr. D. Fenske)
1999–2001 Privatdozent, University of Karlsruhe, Germany
2001–2008 Professor of Inorganic Chemistry, Free University of Berlin, Germany
2008–      Professor of Inorganic Chemistry, University of Karlsruhe (currently Karlsruhe Institute for Technology), Germany

研究内容: ランタノイド、金、亜鉛、アルカリ土類金属などの錯体の性質解明と触媒への応用

論文の概要

Soらの報告において副生成物として確認された1を、著者らは{[PhC(NtBu)2]SiCl} (3)と[DippN(H)Li] (4)の反応から収率90%で得た(図2A左)。合成したモノシリレン1にルイス酸であるCuMesを添加すると、ビスシリレン-銅錯体2が生成した。一方、ビスシリレン2はルイス塩基としてカルベン5を反応させるとモノシリレン1に戻った。1および2におけるケイ素の原子価はそれぞれI価とIII価およびII価であるため、これらはルイス酸/塩基に応答して原子価互変異性を示すことが示唆された。

実際に原子価互変異性化しているか確認するために、それぞれの化学種におけるケイ素の価数を調査した(図2A右)。29Si{1H} NMRスペクトルでは、1は2本のピークが31.8, –61.7 ppmに観測された。このピークは、理論計算からそれぞれI価およびIII価と帰属された。一方で、2は–9.7 ppmに単一のピークが現れ、1種類のケイ素原子のみ存在していた。また、X線結晶構造解析でビスシリレン2のSi–Cu結合長が既存のシリレン(II)–Cu(I)錯体のSi–Cu結合長とよい一致を示したことからも、2のケイ素はII価であると確かめられた [5]。以上の解析結果から、12の間でケイ素の価数はI価とIII価からII価へと変化しており、ルイス酸/塩基の添加により原子価互変異性が起こっていると結論づけられた。

本研究の進行中に、Driessらによりアミン上にフェニル基をもつ類縁体ビスシリレン6’が報告された[6]。そこでDFT計算により、原子価互変異性体間のギブスエネルギーに対するアミン上の置換基の影響が調べられた(図2B左)。かさ高いDipp基をもつ場合、ビスシリレン6がモノシリレン1よりも9 kJ/mol不安定であるのに対し、フェニル基の場合、6’1’よりも53 kJ/mol安定である。61よりも不安定なのは、Dipp基とアミジナート配位子上のtBu基との立体障害によると考えられる(図2B右)。つまり、12(6)が可逆的な原子価互変異性を示すには、アミン上の置換基のかさ高さが重要である。

図2. (A) モノシリレン1とビスシリレン2の合成と物理的性質 (B) モノシリレンとビスシリレンのギブスエネルギーと6および6’の最適化構造 (図2は一部論文より転載)

 

以上、ルイス酸/塩基による低原子価ケイ素の可逆的原子価互変異性が初めて報告された。金属を使わない刺激応答性デバイスや、系中で自在に活性を調節できるシリレン配位子などへの応用が有望視される。

参考文献

  1. Greb, L. Valence Tautomerism of p-Block Element Compounds – An Eligible Phenomenon for Main Group Catalysis? Eur. J. Inorg. Chem. 2022, e202100871. DOI: 10.1002/ejic.202100871
  2. Yao, S.; Kostenko, A.; Xiong, Y.; Ruzicka, A.; Driess, M. Redox Noninnocent Monoatomic Silicon(0) Complex (“Silylone”): Its One-Electron-Reduction Induces an Intramolecular One-Electron-Oxidation of Silicon(0) to Silicon(I). J. Am. Chem. Soc. 2020, 142, 12608–12612. DOI: 10.1021/jacs.0c06238
  3. Koike, T.; Nukazawa, T.; Iwamoto, T. Conformationally Switchable Silylone: Electron Redistribution Accompanied by Ligand Reorientation around a Monatomic Silicon. J. Am. Chem. Soc. 2021, 143, 14332–14341. DOI: 10.1021/jacs.1c06654
  4. Zhang, S.-H.; Xi, H.-W.; Lim, K. H.; Meng, Q.; Huang, M.-B.; So, C.-W. Synthesis and Characterization of a Singlet Delocalized 2,4-Diimino-1,3-disilacyclobutanediyl and a Silylenylsilaimine. Chem. Eur. J. 2012, 18, 4258–4263. DOI: 10.1002/chem.201103351
  5. Paesch, A. N.; Kreyenschmidt, A.-K.; Herbst-Irmer, R.; Stalke, D. Side-Arm Functionalized Silylene Copper(I) Complexes in Catalysis. Inorg. Chem. 2019, 58, 7000–7009. DOI: 10.1021/acs.inorgchem.9b00629
  6. Xiong, Y.; Dong, S.; Yao, S.; Dai, C.; Zhu, J.; Kemper, S. Driess, M. An Isolable 2,5-Disila-3,4-diphosphapyrrole and a Conjugated Si=P−Si=P−Si=N Chain through Degradation of White Phosphorus with a N,N-Bis(silylenyl)aniline. Angew. Chem., Int. Ed. 2022, e202209250. DOI: 10.1002/anie.202209250
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 新しい太陽電池ーペロブスカイト太陽電池とは
  2. 薬学部ってどんなところ?
  3. 尿から薬?! ~意外な由来の医薬品~ その1
  4. 柔軟な小さな分子から巨大環状錯体を組み上げる ~人工タンパク質へ…
  5. 分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の…
  6. ケムステスタッフ Zoom 懇親会を開催しました【前編】
  7. 染色体分裂で活躍するタンパク質“コンデンシン”の正体は分子モータ…
  8. 2011年人気記事ランキング

注目情報

ピックアップ記事

  1. 第68回―「医療応用を志向したスマート高分子材料の開発」Cameron Alexander教授
  2. PACIFICHEM2010に参加してきました!Final!
  3. ゴキブリをバイオ燃料電池、そしてセンサーに
  4. ディークマン縮合 Dieckmann Condensation
  5. 炭素ボールに穴、水素入れ閉じ込め 「分子手術」成功
  6. 【日本精化】新卒採用情報(2024卒)
  7. ふにふにふわふわ☆マシュマロゲルがスゴい!?
  8. タミフルの新規合成法・その2
  9. 第36回「光で羽ばたく分子を活かした新技術の創出」齊藤尚平 准教授
  10. 有機合成化学協会誌2020年7月号:APEX反応・テトラアザ[8]サーキュレン・8族金属錯体・フッ素化アミノ酸・フォトアフィニティーラベル

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP