[スポンサーリンク]

化学者のつぶやき

ルイス酸/塩基でケイ素を操る!シリレンの原子価互変異性化

[スポンサーリンク]

ケイ素錯体がルイス酸/塩基に応答して原子価互変異性を示す例が初めて報告された。遷移金属触媒の代替や配位子への応用が期待される。

ケイ素の原子価互変異性

原子価互変異性とは、外部刺激に応答する中心元素/配位子間での分子内電子移動により、中心元素の価数が変化する現象である(図1A)[1]。この現象は、電子デバイスなどの機能性材料への応用が期待されている。遷移金属元素でよく知られている一方で、典型元素における原子価互変異性は報告例が少ない[1]。中でも低原子価のケイ素における原子価互変異性は、最近2例報告されたのみである。最初の報告は2020年Driessらの報告であり、ビス(シリレニル)-ortho-カルボラン配位子を有する単原子0価ケイ素錯体が還元により原子価互変異性を示した(図1B)[2]。2例目は、2021年に岩本らによって報告された環状(アルキル)(アミノ)シリレンを配位子として用いた単原子0価ケイ素錯体である(図1C)[3]。この錯体は固相と液相によって2つの電子状態が可逆的に切り替わる。このように、原子価互変異性を示すケイ素の化学は未だ開拓されたばかりである。

今回カールスルーエ工科大学のRoeskyらは、2012年にSoらにより報告されたI価およびIII価の異なる価数をもつ2つのケイ素が結合したモノシリレン1に着目した(図1D)[4]。著者らは、モノシリレン1がルイス酸/塩基に応答して原子価互変異性を示すことを見いだした。

図1. (A) 原子価互変異性 (B) 原子価互変異性を示した最初のケイ素錯体 (C) 固相-液相間で可逆的な原子価互変異性を示すケイ素錯体 (D) ルイス酸/塩基による可逆的な原子価互変異性を示すケイ素錯体 (Dipp = 2, 6-diisopropylphenyl)

 

“Stimuli Responsive Silylene: Electromerism Induced Reversible Switching between Mono- and Bis-silylene”
Yadav, R.; Sun, X.; Köppe, R.; Gamer, M. T.; Weigend, F.; Roesky, P. W. Angew. Chem., Int. Ed. 2022, e202211115. DOI: 10.1002/anie.202211115

論文著者の紹介

研究者: Peter W. Roesky

研究者の経歴:

1992–1994 Ph.D., Technical University of Munich, Germany (Prof. W. A. Herrmann)
1995–1996 Postdoc, Northwestern University, USA (Prof. T. J. Marks)
1996–1999 Habilitation, University of Karlsruhe, Germany (Prof. Dr. D. Fenske)
1999–2001 Privatdozent, University of Karlsruhe, Germany
2001–2008 Professor of Inorganic Chemistry, Free University of Berlin, Germany
2008–      Professor of Inorganic Chemistry, University of Karlsruhe (currently Karlsruhe Institute for Technology), Germany

研究内容: ランタノイド、金、亜鉛、アルカリ土類金属などの錯体の性質解明と触媒への応用

論文の概要

Soらの報告において副生成物として確認された1を、著者らは{[PhC(NtBu)2]SiCl} (3)と[DippN(H)Li] (4)の反応から収率90%で得た(図2A左)。合成したモノシリレン1にルイス酸であるCuMesを添加すると、ビスシリレン-銅錯体2が生成した。一方、ビスシリレン2はルイス塩基としてカルベン5を反応させるとモノシリレン1に戻った。1および2におけるケイ素の原子価はそれぞれI価とIII価およびII価であるため、これらはルイス酸/塩基に応答して原子価互変異性を示すことが示唆された。

実際に原子価互変異性化しているか確認するために、それぞれの化学種におけるケイ素の価数を調査した(図2A右)。29Si{1H} NMRスペクトルでは、1は2本のピークが31.8, –61.7 ppmに観測された。このピークは、理論計算からそれぞれI価およびIII価と帰属された。一方で、2は–9.7 ppmに単一のピークが現れ、1種類のケイ素原子のみ存在していた。また、X線結晶構造解析でビスシリレン2のSi–Cu結合長が既存のシリレン(II)–Cu(I)錯体のSi–Cu結合長とよい一致を示したことからも、2のケイ素はII価であると確かめられた [5]。以上の解析結果から、12の間でケイ素の価数はI価とIII価からII価へと変化しており、ルイス酸/塩基の添加により原子価互変異性が起こっていると結論づけられた。

本研究の進行中に、Driessらによりアミン上にフェニル基をもつ類縁体ビスシリレン6’が報告された[6]。そこでDFT計算により、原子価互変異性体間のギブスエネルギーに対するアミン上の置換基の影響が調べられた(図2B左)。かさ高いDipp基をもつ場合、ビスシリレン6がモノシリレン1よりも9 kJ/mol不安定であるのに対し、フェニル基の場合、6’1’よりも53 kJ/mol安定である。61よりも不安定なのは、Dipp基とアミジナート配位子上のtBu基との立体障害によると考えられる(図2B右)。つまり、12(6)が可逆的な原子価互変異性を示すには、アミン上の置換基のかさ高さが重要である。

図2. (A) モノシリレン1とビスシリレン2の合成と物理的性質 (B) モノシリレンとビスシリレンのギブスエネルギーと6および6’の最適化構造 (図2は一部論文より転載)

 

以上、ルイス酸/塩基による低原子価ケイ素の可逆的原子価互変異性が初めて報告された。金属を使わない刺激応答性デバイスや、系中で自在に活性を調節できるシリレン配位子などへの応用が有望視される。

参考文献

  1. Greb, L. Valence Tautomerism of p-Block Element Compounds – An Eligible Phenomenon for Main Group Catalysis? Eur. J. Inorg. Chem. 2022, e202100871. DOI: 10.1002/ejic.202100871
  2. Yao, S.; Kostenko, A.; Xiong, Y.; Ruzicka, A.; Driess, M. Redox Noninnocent Monoatomic Silicon(0) Complex (“Silylone”): Its One-Electron-Reduction Induces an Intramolecular One-Electron-Oxidation of Silicon(0) to Silicon(I). J. Am. Chem. Soc. 2020, 142, 12608–12612. DOI: 10.1021/jacs.0c06238
  3. Koike, T.; Nukazawa, T.; Iwamoto, T. Conformationally Switchable Silylone: Electron Redistribution Accompanied by Ligand Reorientation around a Monatomic Silicon. J. Am. Chem. Soc. 2021, 143, 14332–14341. DOI: 10.1021/jacs.1c06654
  4. Zhang, S.-H.; Xi, H.-W.; Lim, K. H.; Meng, Q.; Huang, M.-B.; So, C.-W. Synthesis and Characterization of a Singlet Delocalized 2,4-Diimino-1,3-disilacyclobutanediyl and a Silylenylsilaimine. Chem. Eur. J. 2012, 18, 4258–4263. DOI: 10.1002/chem.201103351
  5. Paesch, A. N.; Kreyenschmidt, A.-K.; Herbst-Irmer, R.; Stalke, D. Side-Arm Functionalized Silylene Copper(I) Complexes in Catalysis. Inorg. Chem. 2019, 58, 7000–7009. DOI: 10.1021/acs.inorgchem.9b00629
  6. Xiong, Y.; Dong, S.; Yao, S.; Dai, C.; Zhu, J.; Kemper, S. Driess, M. An Isolable 2,5-Disila-3,4-diphosphapyrrole and a Conjugated Si=P−Si=P−Si=N Chain through Degradation of White Phosphorus with a N,N-Bis(silylenyl)aniline. Angew. Chem., Int. Ed. 2022, e202209250. DOI: 10.1002/anie.202209250
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 複数のねじれを持つ芳香族ベルトの不斉合成と構造解析に成功
  2. エネルギーの襷を繋ぐオキシムとアルケンの[2+2]光付加環化
  3. ミツバチに付くダニに効く化学物質の研究開発のはなし
  4. 海外機関に訪問し、英語講演にチャレンジ!~② アポを取ってみよう…
  5. 論文執筆&出版を学ぶポータルサイト
  6. 金属内包フラーレンを使った分子レーダーの創製
  7. 化学者のためのエレクトロニクス入門⑤ ~ディスプレイ分野などで活…
  8. 光触媒反応用途の青色LED光源を比較してみた【2020/8/11…

注目情報

ピックアップ記事

  1. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活用とは?
  2. 第156回―「異種金属―有機構造体の創製」Stéphane Baudron教授
  3. 反応機構を書いてみよう!~電子の矢印講座・その1~
  4. 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン:1,5,7-Triazabicyclo[4.4.0]dec-5-ene
  5. 第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催します!
  6. COX2阻害薬 リウマチ鎮痛薬に副作用
  7. 島津製作所、純利益325億円 過去最高、4年連続で更新
  8. 服用で意識不明6件、抗生剤に厚労省が注意呼びかけ
  9. マイクロ波によるケミカルリサイクル 〜PlaWave®︎の開発動向と事業展望〜
  10. 第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

小松 徹 Tohru Komatsu

小松 徹(こまつ とおる、19xx年xx月xx日-)は、日本の化学者である。東京大学大学院薬学系研究…

化学CMアップデート

いろいろ忙しくてケムステからほぼ一年離れておりましたが、少しだけ復活しました。その復活第一弾は化学企…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP