[スポンサーリンク]

化学者のつぶやき

ルイス酸/塩基でケイ素を操る!シリレンの原子価互変異性化

[スポンサーリンク]

ケイ素錯体がルイス酸/塩基に応答して原子価互変異性を示す例が初めて報告された。遷移金属触媒の代替や配位子への応用が期待される。

ケイ素の原子価互変異性

原子価互変異性とは、外部刺激に応答する中心元素/配位子間での分子内電子移動により、中心元素の価数が変化する現象である(図1A)[1]。この現象は、電子デバイスなどの機能性材料への応用が期待されている。遷移金属元素でよく知られている一方で、典型元素における原子価互変異性は報告例が少ない[1]。中でも低原子価のケイ素における原子価互変異性は、最近2例報告されたのみである。最初の報告は2020年Driessらの報告であり、ビス(シリレニル)-ortho-カルボラン配位子を有する単原子0価ケイ素錯体が還元により原子価互変異性を示した(図1B)[2]。2例目は、2021年に岩本らによって報告された環状(アルキル)(アミノ)シリレンを配位子として用いた単原子0価ケイ素錯体である(図1C)[3]。この錯体は固相と液相によって2つの電子状態が可逆的に切り替わる。このように、原子価互変異性を示すケイ素の化学は未だ開拓されたばかりである。

今回カールスルーエ工科大学のRoeskyらは、2012年にSoらにより報告されたI価およびIII価の異なる価数をもつ2つのケイ素が結合したモノシリレン1に着目した(図1D)[4]。著者らは、モノシリレン1がルイス酸/塩基に応答して原子価互変異性を示すことを見いだした。

図1. (A) 原子価互変異性 (B) 原子価互変異性を示した最初のケイ素錯体 (C) 固相-液相間で可逆的な原子価互変異性を示すケイ素錯体 (D) ルイス酸/塩基による可逆的な原子価互変異性を示すケイ素錯体 (Dipp = 2, 6-diisopropylphenyl)

 

“Stimuli Responsive Silylene: Electromerism Induced Reversible Switching between Mono- and Bis-silylene”
Yadav, R.; Sun, X.; Köppe, R.; Gamer, M. T.; Weigend, F.; Roesky, P. W. Angew. Chem., Int. Ed. 2022, e202211115. DOI: 10.1002/anie.202211115

論文著者の紹介

研究者: Peter W. Roesky

研究者の経歴:

1992–1994 Ph.D., Technical University of Munich, Germany (Prof. W. A. Herrmann)
1995–1996 Postdoc, Northwestern University, USA (Prof. T. J. Marks)
1996–1999 Habilitation, University of Karlsruhe, Germany (Prof. Dr. D. Fenske)
1999–2001 Privatdozent, University of Karlsruhe, Germany
2001–2008 Professor of Inorganic Chemistry, Free University of Berlin, Germany
2008–      Professor of Inorganic Chemistry, University of Karlsruhe (currently Karlsruhe Institute for Technology), Germany

研究内容: ランタノイド、金、亜鉛、アルカリ土類金属などの錯体の性質解明と触媒への応用

論文の概要

Soらの報告において副生成物として確認された1を、著者らは{[PhC(NtBu)2]SiCl} (3)と[DippN(H)Li] (4)の反応から収率90%で得た(図2A左)。合成したモノシリレン1にルイス酸であるCuMesを添加すると、ビスシリレン-銅錯体2が生成した。一方、ビスシリレン2はルイス塩基としてカルベン5を反応させるとモノシリレン1に戻った。1および2におけるケイ素の原子価はそれぞれI価とIII価およびII価であるため、これらはルイス酸/塩基に応答して原子価互変異性を示すことが示唆された。

実際に原子価互変異性化しているか確認するために、それぞれの化学種におけるケイ素の価数を調査した(図2A右)。29Si{1H} NMRスペクトルでは、1は2本のピークが31.8, –61.7 ppmに観測された。このピークは、理論計算からそれぞれI価およびIII価と帰属された。一方で、2は–9.7 ppmに単一のピークが現れ、1種類のケイ素原子のみ存在していた。また、X線結晶構造解析でビスシリレン2のSi–Cu結合長が既存のシリレン(II)–Cu(I)錯体のSi–Cu結合長とよい一致を示したことからも、2のケイ素はII価であると確かめられた [5]。以上の解析結果から、12の間でケイ素の価数はI価とIII価からII価へと変化しており、ルイス酸/塩基の添加により原子価互変異性が起こっていると結論づけられた。

本研究の進行中に、Driessらによりアミン上にフェニル基をもつ類縁体ビスシリレン6’が報告された[6]。そこでDFT計算により、原子価互変異性体間のギブスエネルギーに対するアミン上の置換基の影響が調べられた(図2B左)。かさ高いDipp基をもつ場合、ビスシリレン6がモノシリレン1よりも9 kJ/mol不安定であるのに対し、フェニル基の場合、6’1’よりも53 kJ/mol安定である。61よりも不安定なのは、Dipp基とアミジナート配位子上のtBu基との立体障害によると考えられる(図2B右)。つまり、12(6)が可逆的な原子価互変異性を示すには、アミン上の置換基のかさ高さが重要である。

図2. (A) モノシリレン1とビスシリレン2の合成と物理的性質 (B) モノシリレンとビスシリレンのギブスエネルギーと6および6’の最適化構造 (図2は一部論文より転載)

 

以上、ルイス酸/塩基による低原子価ケイ素の可逆的原子価互変異性が初めて報告された。金属を使わない刺激応答性デバイスや、系中で自在に活性を調節できるシリレン配位子などへの応用が有望視される。

参考文献

  1. Greb, L. Valence Tautomerism of p-Block Element Compounds – An Eligible Phenomenon for Main Group Catalysis? Eur. J. Inorg. Chem. 2022, e202100871. DOI: 10.1002/ejic.202100871
  2. Yao, S.; Kostenko, A.; Xiong, Y.; Ruzicka, A.; Driess, M. Redox Noninnocent Monoatomic Silicon(0) Complex (“Silylone”): Its One-Electron-Reduction Induces an Intramolecular One-Electron-Oxidation of Silicon(0) to Silicon(I). J. Am. Chem. Soc. 2020, 142, 12608–12612. DOI: 10.1021/jacs.0c06238
  3. Koike, T.; Nukazawa, T.; Iwamoto, T. Conformationally Switchable Silylone: Electron Redistribution Accompanied by Ligand Reorientation around a Monatomic Silicon. J. Am. Chem. Soc. 2021, 143, 14332–14341. DOI: 10.1021/jacs.1c06654
  4. Zhang, S.-H.; Xi, H.-W.; Lim, K. H.; Meng, Q.; Huang, M.-B.; So, C.-W. Synthesis and Characterization of a Singlet Delocalized 2,4-Diimino-1,3-disilacyclobutanediyl and a Silylenylsilaimine. Chem. Eur. J. 2012, 18, 4258–4263. DOI: 10.1002/chem.201103351
  5. Paesch, A. N.; Kreyenschmidt, A.-K.; Herbst-Irmer, R.; Stalke, D. Side-Arm Functionalized Silylene Copper(I) Complexes in Catalysis. Inorg. Chem. 2019, 58, 7000–7009. DOI: 10.1021/acs.inorgchem.9b00629
  6. Xiong, Y.; Dong, S.; Yao, S.; Dai, C.; Zhu, J.; Kemper, S. Driess, M. An Isolable 2,5-Disila-3,4-diphosphapyrrole and a Conjugated Si=P−Si=P−Si=N Chain through Degradation of White Phosphorus with a N,N-Bis(silylenyl)aniline. Angew. Chem., Int. Ed. 2022, e202209250. DOI: 10.1002/anie.202209250
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ホウ素は求電子剤?求核剤?
  2. ハットする間にエピメリ化!Pleurotinの形式合成
  3. Hybrid Materials 2013に参加してきました!
  4. 水分子が見えた! ー原子間力顕微鏡を用いた水分子ネットワークの観…
  5. 【10月開催】 【第二期 マツモトファインケミカル技術セミナー開…
  6. 分子のねじれの強さを調節して分子運動を制御する
  7. 高い発光性を示すヘリセンの迅速的合成
  8. 導電性ゲル Conducting Gels: 流れない流体に電気…

注目情報

ピックアップ記事

  1. 人生、宇宙、命名の答え
  2. 精密質量計算の盲点:不正確なデータ提出を防ぐために
  3. 環状アミンを切ってフッ素をいれる
  4. 安藤弘宗 Hiromune Ando
  5. 3Dプリンタとシェールガスとポリ乳酸と
  6. 「さくら、さくら」劇場鑑賞券プレゼント結果発表!
  7. 求核置換反応 Nucleophilic Substitution
  8. 新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし
  9. 酸化亜鉛を用い青色ダイオード 東北大開発 コスト減期待
  10. 科学とは「世界中で共有できるワクワクの源」! 2018年度ロレアル-ユネスコ女性科学者 日本奨励賞

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP