[スポンサーリンク]

化学者のつぶやき

ルイス酸/塩基でケイ素を操る!シリレンの原子価互変異性化

[スポンサーリンク]

ケイ素錯体がルイス酸/塩基に応答して原子価互変異性を示す例が初めて報告された。遷移金属触媒の代替や配位子への応用が期待される。

ケイ素の原子価互変異性

原子価互変異性とは、外部刺激に応答する中心元素/配位子間での分子内電子移動により、中心元素の価数が変化する現象である(図1A)[1]。この現象は、電子デバイスなどの機能性材料への応用が期待されている。遷移金属元素でよく知られている一方で、典型元素における原子価互変異性は報告例が少ない[1]。中でも低原子価のケイ素における原子価互変異性は、最近2例報告されたのみである。最初の報告は2020年Driessらの報告であり、ビス(シリレニル)-ortho-カルボラン配位子を有する単原子0価ケイ素錯体が還元により原子価互変異性を示した(図1B)[2]。2例目は、2021年に岩本らによって報告された環状(アルキル)(アミノ)シリレンを配位子として用いた単原子0価ケイ素錯体である(図1C)[3]。この錯体は固相と液相によって2つの電子状態が可逆的に切り替わる。このように、原子価互変異性を示すケイ素の化学は未だ開拓されたばかりである。

今回カールスルーエ工科大学のRoeskyらは、2012年にSoらにより報告されたI価およびIII価の異なる価数をもつ2つのケイ素が結合したモノシリレン1に着目した(図1D)[4]。著者らは、モノシリレン1がルイス酸/塩基に応答して原子価互変異性を示すことを見いだした。

図1. (A) 原子価互変異性 (B) 原子価互変異性を示した最初のケイ素錯体 (C) 固相-液相間で可逆的な原子価互変異性を示すケイ素錯体 (D) ルイス酸/塩基による可逆的な原子価互変異性を示すケイ素錯体 (Dipp = 2, 6-diisopropylphenyl)

 

“Stimuli Responsive Silylene: Electromerism Induced Reversible Switching between Mono- and Bis-silylene”
Yadav, R.; Sun, X.; Köppe, R.; Gamer, M. T.; Weigend, F.; Roesky, P. W. Angew. Chem., Int. Ed. 2022, e202211115. DOI: 10.1002/anie.202211115

論文著者の紹介

研究者: Peter W. Roesky

研究者の経歴:

1992–1994 Ph.D., Technical University of Munich, Germany (Prof. W. A. Herrmann)
1995–1996 Postdoc, Northwestern University, USA (Prof. T. J. Marks)
1996–1999 Habilitation, University of Karlsruhe, Germany (Prof. Dr. D. Fenske)
1999–2001 Privatdozent, University of Karlsruhe, Germany
2001–2008 Professor of Inorganic Chemistry, Free University of Berlin, Germany
2008–      Professor of Inorganic Chemistry, University of Karlsruhe (currently Karlsruhe Institute for Technology), Germany

研究内容: ランタノイド、金、亜鉛、アルカリ土類金属などの錯体の性質解明と触媒への応用

論文の概要

Soらの報告において副生成物として確認された1を、著者らは{[PhC(NtBu)2]SiCl} (3)と[DippN(H)Li] (4)の反応から収率90%で得た(図2A左)。合成したモノシリレン1にルイス酸であるCuMesを添加すると、ビスシリレン-銅錯体2が生成した。一方、ビスシリレン2はルイス塩基としてカルベン5を反応させるとモノシリレン1に戻った。1および2におけるケイ素の原子価はそれぞれI価とIII価およびII価であるため、これらはルイス酸/塩基に応答して原子価互変異性を示すことが示唆された。

実際に原子価互変異性化しているか確認するために、それぞれの化学種におけるケイ素の価数を調査した(図2A右)。29Si{1H} NMRスペクトルでは、1は2本のピークが31.8, –61.7 ppmに観測された。このピークは、理論計算からそれぞれI価およびIII価と帰属された。一方で、2は–9.7 ppmに単一のピークが現れ、1種類のケイ素原子のみ存在していた。また、X線結晶構造解析でビスシリレン2のSi–Cu結合長が既存のシリレン(II)–Cu(I)錯体のSi–Cu結合長とよい一致を示したことからも、2のケイ素はII価であると確かめられた [5]。以上の解析結果から、12の間でケイ素の価数はI価とIII価からII価へと変化しており、ルイス酸/塩基の添加により原子価互変異性が起こっていると結論づけられた。

本研究の進行中に、Driessらによりアミン上にフェニル基をもつ類縁体ビスシリレン6’が報告された[6]。そこでDFT計算により、原子価互変異性体間のギブスエネルギーに対するアミン上の置換基の影響が調べられた(図2B左)。かさ高いDipp基をもつ場合、ビスシリレン6がモノシリレン1よりも9 kJ/mol不安定であるのに対し、フェニル基の場合、6’1’よりも53 kJ/mol安定である。61よりも不安定なのは、Dipp基とアミジナート配位子上のtBu基との立体障害によると考えられる(図2B右)。つまり、12(6)が可逆的な原子価互変異性を示すには、アミン上の置換基のかさ高さが重要である。

図2. (A) モノシリレン1とビスシリレン2の合成と物理的性質 (B) モノシリレンとビスシリレンのギブスエネルギーと6および6’の最適化構造 (図2は一部論文より転載)

 

以上、ルイス酸/塩基による低原子価ケイ素の可逆的原子価互変異性が初めて報告された。金属を使わない刺激応答性デバイスや、系中で自在に活性を調節できるシリレン配位子などへの応用が有望視される。

参考文献

  1. Greb, L. Valence Tautomerism of p-Block Element Compounds – An Eligible Phenomenon for Main Group Catalysis? Eur. J. Inorg. Chem. 2022, e202100871. DOI: 10.1002/ejic.202100871
  2. Yao, S.; Kostenko, A.; Xiong, Y.; Ruzicka, A.; Driess, M. Redox Noninnocent Monoatomic Silicon(0) Complex (“Silylone”): Its One-Electron-Reduction Induces an Intramolecular One-Electron-Oxidation of Silicon(0) to Silicon(I). J. Am. Chem. Soc. 2020, 142, 12608–12612. DOI: 10.1021/jacs.0c06238
  3. Koike, T.; Nukazawa, T.; Iwamoto, T. Conformationally Switchable Silylone: Electron Redistribution Accompanied by Ligand Reorientation around a Monatomic Silicon. J. Am. Chem. Soc. 2021, 143, 14332–14341. DOI: 10.1021/jacs.1c06654
  4. Zhang, S.-H.; Xi, H.-W.; Lim, K. H.; Meng, Q.; Huang, M.-B.; So, C.-W. Synthesis and Characterization of a Singlet Delocalized 2,4-Diimino-1,3-disilacyclobutanediyl and a Silylenylsilaimine. Chem. Eur. J. 2012, 18, 4258–4263. DOI: 10.1002/chem.201103351
  5. Paesch, A. N.; Kreyenschmidt, A.-K.; Herbst-Irmer, R.; Stalke, D. Side-Arm Functionalized Silylene Copper(I) Complexes in Catalysis. Inorg. Chem. 2019, 58, 7000–7009. DOI: 10.1021/acs.inorgchem.9b00629
  6. Xiong, Y.; Dong, S.; Yao, S.; Dai, C.; Zhu, J.; Kemper, S. Driess, M. An Isolable 2,5-Disila-3,4-diphosphapyrrole and a Conjugated Si=P−Si=P−Si=N Chain through Degradation of White Phosphorus with a N,N-Bis(silylenyl)aniline. Angew. Chem., Int. Ed. 2022, e202209250. DOI: 10.1002/anie.202209250
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 新しい構造を持つゼオライトの合成に成功!
  2. 優れた研究者は優れた指導者
  3. 【ケムステSlackに訊いてみた③】化学で美しいと思うことを教え…
  4. 【10月開催】第2回 マツモトファインケミカル技術セミナー 有機…
  5. 半導体・センシング材料に応用可能なリン複素環化合物の誘導体化
  6. 売切れ必至!?ガロン瓶をまもるうわさの「ガロテクト」試してみた
  7. 人工軟骨への応用を目指した「ダブルネットワークゲル」
  8. 関東化学2019年採用情報

注目情報

ピックアップ記事

  1. エッセイ「産業ポリマーと藝術ポリマーのあいだ」について
  2. ボルテゾミブ (bortezomib)
  3. 創薬化学―有機合成からのアプローチ
  4. 新課程視覚でとらえるフォトサイエンス化学図録
  5. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  6. 分子間相互作用によりお椀反転の遷移状態を安定化する
  7. 有機硫黄ラジカル触媒で不斉反応に挑戦
  8. NMR解析ソフト。まとめてみた。①
  9. オマー・ヤギー Omar M. Yaghi
  10. 第149回―「ガスの貯蔵・分離・触媒変換に役立つ金属-有機構造体の開発」Banglin Chen教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

可視光活性な分子内Frustrated Lewis Pairを鍵中間体とする多機能ボリルチオフェノール触媒の開発

第 625 回のスポットライトリサーチは、名古屋大学大学院 工学研究科 有機・高…

3つのラジカルを自由自在!アルケンのアリール-アルキル化反応

アルケンの位置選択的なアリール-アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP