[スポンサーリンク]

化学者のつぶやき

同位体効果の解釈にはご注意を!

化学反応の機構解析に威力を発揮する一つが速度論的同位体効果(KIE)の測定。ざっくり述べると、「重い同位体を含む結合を切る化学反応は、軽い同位体の反応に比べて速度が遅くなる現象」です。

KIEを適切に測定すると、どの結合がどの段階で切れているかに加え、遷移状態・律速段階などに関わる貴重な情報が得られます。とりわけ近年の一大研究領域である触媒的C-H活性化反応では、変換標的が炭素-水素結合であること、重水素置換はKIEを大きな値として観測しやすいことから、機構解析のスタンダードとして使われるまでになっています[1]。

しかし、有機金属化学の大家・J.F.Hartwig教授はこの潮流をうけ、「実情はそれほど単純ではなく、KIEの解釈には気をつけなければならない」と警鐘する旨の論説を発表しています。すこし専門的ながら興味深い話ですので、かいつまんで紹介してみましょう。

On the Interpretation of Deuterium Kinetic Isotope Effects in CH Bond Functionalizations by Transition-Metal Complexes
Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066. DOI: 10.1002/anie.201107334

※今回の記事では「KIE=一次の速度論的同位体効果」とします。

KIEだけで律速段階は分かるのか?

『KIEが観測されている=律速段階はC-H結合の切断である』と結論している間違いが非常に多い、と著者らはまず述べています。

C-H活性化の機構解析に汎用される実験法は、以下の3パターンに大別されます。

KIE_alert_2

反応式は論文から引用

このうちA型実験はそもそも精密測定が難しく手順も面倒で、厳密にやる人は多くありません。一方のB・C型実験は、実験誤差を少なく出来、特殊な実験手順を設定せずとも良いことが利点です。とにかく簡便に解析できるため非常に好まれる傾向にあり、B・C型データだけで結論を導いている論文も、実に多く見られます。

しかしながら、「KIEが観測される=C-H結合の切断が律速段階である」ことの論拠として妥当なのは、A型実験による結果だけです。ここは理解しておくべきでしょう。一見して同じことを調べている実験ですが、厳密に同じアウトプットを出していないのです。

 

反応によってKIE観測パターンが違ってくる?

実例を示すべく著者らは、以下の5ケースを取り上げ、エネルギー図付きでKIEの出方がまったく違うことを論じています。


さらに現実的なデータ解釈時には、触媒条件であればinduction periodの介在、触媒失活、定常状態近似から外れるなどで、反応速度が影響を受けやすいことにも留意する必要があります。見落としがちですが、B・C型実験をNMR解析する場合、重水素の分子間クロスオーバーが起きている可能性も考慮しておかねばなりません。他にもいろいろポイントが挙げられていますので、詳しくはエッセイをご覧ください。

 

解釈に注意を要する実例

こういった事情ゆえに、A~Cのうち特定のKIE測定を行うだけでは、結論が導けないケースが多々考えられます。相当する事例が文中でいくつか取り上げられています。

KIE_alert_4

反応式は論文から引用

たとえば上の事例[2]では(a)式でC型、(b)式でB型のKIE測定が行われており、それぞれ記載の値が得られています。

仮にC型実験しかやらなければ「C-H結合切断過程が律速である」とのミスジャッジを得がちなのですが、B型実験のKIE値を見ると単純に結論できないことが分かります。

事実この反応は、C-Cl結合への酸化的付加が律速段階(すなわち③のケース)に相当すると結論づけられています。

このような例からも、反応機構を厳密に議論したければA・B・C型実験を一通り実施することが必須と言えます。「簡単に終わって楽に済む実験で、拙速に結論を得ようとする姿勢は、どんなことでも要注意であるなぁ・・・」と考えさせられたりします。

反応開発に取り組む機会のある研究者の方々(特に専門分野的に少しズレてる方や、解析経験の少ない学生さん)は、是非一読されてはどうでしょうか。とっても有意義なエッセイだと思います。

 

関連文献

  1. (a) Gómez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857. DOI: 10.1021/cr100436k (b) Jones, W. D. Acc. Chem. Res. 2003, 36, 140. DOI: 10.1021/ar020148i
  2. Geary, L. M.; Hultin, P. G. Eur. J. Org. Chem. 2010, 5563. DOI: 10.1002/ejoc.201000787

関連書籍

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 溶媒としてアルコールを検討しました(笑)
  2. 「オプトジェネティクス」はいかにして開発されたか
  3. 「ドイツ大学論」 ~近代大学の根本思想とは~
  4. ケイ素置換gem-二クロムメタン錯体の反応性と触媒作用
  5. 私がケムステスタッフになったワケ(2)
  6. 有機合成化学協会誌2018年8月号:触媒的不斉全合成・分子ロータ…
  7. 有機EL素子の開発と照明への応用
  8. 糖鎖クラスター修飾で分子の生体内挙動を制御する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. デービーメダル―受賞者一覧
  2. バナジル(アセチルアセトナト) Vanadyl(IV) acetylacetonate
  3. マーティン・ウィッテ Martin D. Witte
  4. [5+1]環化戦略による触媒的置換シクロヘキサン合成
  5. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線
  6. 科学を伝える-サイエンスコミュニケーターのお仕事-梅村綾子さん
  7. 遷移金属を用いない脂肪族C-H結合のホウ素化
  8. 細見・櫻井アリル化反応 Hosomi-Sakurai Allylation
  9. 化学グランプリ 参加者を募集
  10. 性フェロモン感じる遺伝子、ガで初発見…京大グループ

関連商品

注目情報

注目情報

最新記事

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~

動物や臓器に代わる画期的な実験ツールとして注目される生体機能チップ、原薬(API)合成に不可欠なプロ…

最小のシクロデキストリンを組み上げる!

第196回目のスポットライトリサーチは、関西学院大学理工学部化学科(山田研究室)・若森晋之介 助教に…

周期表の形はこれでいいのか? –上下逆転した周期表が提案される–

重い元素を上に置き、軽い元素を下に置く周期表が提案されました。この記事では、その上下逆転周期表の利点…

有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前線

有機合成化学協会が発行する有機合成化学協会誌、2019年5月号がオンライン公開されました。令…

尿から薬?! ~意外な由来の医薬品~ その2

Tshozoです。前回の続き、さっそく。【ミリモスチム ~ニッチな需要はあるものの~】ウロキ…

Chem-Station Twitter

PAGE TOP