[スポンサーリンク]

化学者のつぶやき

高収率・高選択性―信頼性の限界はどこにある?

[スポンサーリンク]

 

“On the Practical Limits of Determining Isolated Product Yields and Ratios of Stereoisomers: Reflections, Analysis, and Redemption”
Wernerova, M.; Hudlicky, T. Synlett 2010, 2701. DOI: 10.1055/s-0030-1259018

今回はちょっとマニアックですが、合成化学の現場向けのおはなしを。

反応開発や化学合成に取り組む場合、化学収率・選択性はどうやって算出していますか?

小スケールの検討段階なら積分値からのNMR/GC内部標準法、ある程度の量が取れる反応なら単離収率(isolated yield)として決めてしまうことが多いと思います。

とはいえいざ論文にそれを載せるとき、また自分が論文上のデータを読み解くとき、果たしてどれほどの実験誤差があると見なすべきなのか?あまりに高い数値の場合、どこまで妥当性のある値なのか?これは化学において意外にも統一見解がなく、きっちり議論されてないことのように思います。人によって認識や感覚が異なるために、いろいろな説が流布している現状ではないでしょうか。

実にこの点を考慮に入れずして正しいデータの提供・解釈など出来ない、というのは正論です。

先日発表されたSynlettのAccountにて、その辺りの論説が公開されました。かいつまんでご紹介してみたいと思います。

「単離収率 >95%」という表記はナンセンス?

そもそも精製で必ずロスがあるので「単離収率>95%」は現実的にありえない、というのが著者らの主張です。

著者らはアセトアニリドの純品を用いて精製操作だけの平均ロスを見積もっています。例えばTable 1はカラムクロマトグラフィにかけた回収結果、Table 2は一般的な分液抽出を経た回収結果です。
limit_yield_2.gif
limit_yield_3.gif正確・妥当な実験手順で何度行ったとしても、精製過程でのロスは避けられないことが分かります。精製操作を一回経るごとに、少なくとも1-2%は必ずロスる、これが現実的認識として適切なようです。蒸留精製や再結晶精製になればもっとブレが大きくなり、実験者のテクニックに依存する側面もかなり大きくなってくるでしょう。

また、小スケールの秤量に基づく収率計算からして信頼性に疑問符がつくとも著者らは主張します。

溶媒が飛びきらないうちに秤量してしまったり、クロマトグラフィに使ったシリカゲルがサンプルに混入することもあるので、収量は得てして高めに出るのは御存知の通り。加えてアカデミック研究の場合、反応スケールも5-20 mgと、ごく小さなことがほとんどです。

著者ら自身もサンプルごとに重さを秤量して、実際値から平均的にどの程度エラーがでるか、ということを見積もっています。
limit_yield_4.gif
limit_yield_5.gifTable3が示すとおり、5mg以下のサンプルでは誤差範囲が10%を超え、単離収率に信頼性が無いことが分かります。使う容器のサイズによっても値はブレる、ということがTable4では示されています。容器が空気中の水を吸うことが一因だそうで、当然ながら、大きな容器を使って少量のサンプルを測るほど、大きな誤差がでる結果になります。

経験の浅い人はつい忘れがちになりますが、保存のために封入する不活性気体・アルゴンも、重さを狂わせる要因の一つです。アルゴンは実にバカにならない重さがあります。「所詮、気体でしょ?」と考える学生の皆さんは、ぜひ一度、自分の目で実際に確かめてみてください。こんなに重さが違うのか!とかなりびっくりすると思いますよ。

こんな現実があるので、数mgしか目的物の取れない全合成にて、overall yieldから効率を比較することなどナンセンスだ、とも述べられています。(代わりにproduct/waste比[1]で効率比較するのが適切、という提案をしています。)

ジアステレオマー比/エナンチオマー比の測定値はどこまで正確なのか?

構造類似なジアステレオマー/エナンチオマーは単離が難しいため、NMR/GC/HPLC/MSなどを活用して混合物のまま存在比を求めてしまうのが定法です。

しかし著者らはちゃんとした校正を経ていないまま測定を行っているがゆえに、ミスリーディングが引き起こされていると主張します。

たとえば下記スキームのようなオギザリルアミドのジアステレオマー混合物を、NMR/HPLC/GCからピーク積分比を求め、実際値と比較した結果がTable5に示されています。
limit_yield_6.gif
limit_yield_7.gif校正は行うほうがベター、これは明らかです。この中では一番精度の悪いイメージたるNMRでも、校正しないGCより精度良く測定できるようです。ただしNMR特有の測定的ばらつきを考慮にいれてないため、やはり信頼性はそこまででも無いようです(1-2%程度は必ずばらつく)。

またどの分析手法を用いても、200/1以上の測定値は事実上アテにならない、ということが見て取れます。サンプル濃度がごく薄い時は非線形吸光応答がみられる(ランベルト・ベールの法則)ため、ピークエリアの積分値は実情を反映しにくいと指摘されています。

またそもそもの話として、化学選択的反応で200/1以上の比を出すには、遷移状態に3kcal/mol以上のエネルギー差が必要であり、人工反応でそれを実現することは事実上不可能、とも述べられています。

その反面、論文によってはNMRだけから1000/1の選択比を算出している例もあるようで・・・さすがにそれはどうなのか?・・・とも思えますが。

さらに彼らは、Mosherエステル法の精度も確かめています。

1-フェニルエタノールを例に、1H/19F NMR、HPLCを用いてエナンチオマー比の測定を行っていますが、ここでもやはり95:5以上の混合比になると確実性がなくなるようです。

そもそもエナンチオ混合物をMosherエステル化する反応は、二つのジアステレオマーを生成させる反応です。エステル化過程でresolutionがかかってしまう可能性も、考慮に入れておかなければなりません。これは意外に忘れがち・見落としがちたるポイントではないでしょうか。

まとめ

結論として、以下のことを徹底すべきだと彼らは主張します。

・「>95%」は正確な測定自体難しく、現実的にはこう書く意味はない
・単離収率は複数回の実験を行い、範囲(range)と転換率(conversion)を表記すべき
・高い測定値データを出したときには、校正の有無を表記すべき
・選択性の表記においては、過剰率(de/ee)よりも比率(dr/er)を使うべき [2] ・数的評価指標に照らさずして、practicalとかefficientという用語を使うべきではない

昔と比べて有機合成の技術が発展したために、収率/選択性のインフレが起こっている現状、100%にかなり近い数値を扱うときには、より一層の慎重さを持つべきだろう・・・という、なかなかに意義ある提案だと思えます。

コンセプトの妥当性を示すために高品質なデータを要求される、ハイペースで論文を出さねばならないプレッシャーがある、反応の価値を判断の容易な「値」だけで決めてしまうレフェリーの存在、アカデミック環境の指導力不足、データ解釈時に入り込む恣意性・・・などなど、数値のインフレが起きる背景には、そんな諸々の要因があると指摘されています。

確かに反応開発研究などはそれが顕著で、反応形式が新しくない限りはよほど良い収率・選択性が出ない限り、一流ジャーナルに通らない現状です。データを見目麗しくすべく上手く行った基質だけを選別し、駄目だった基質はそもそも検討表に載せない・・・などといったことも普通になされています。その良し悪しについて議論することはここではしませんが、競争の激化が生み出す弊害の一つであることは間違いないのでしょう。
捏造とまではいかずとも、良いデータを出したい気持ちがはやるあまり、恣意的なデータ解釈をしがちになるというのは誰にでも起こりえることです。

ラボに入ったばかりで実験経験が浅い学生はもちろん、経験豊富な研究者でも自分を見つめ直す意味で、一読しておくに良い文献では無いでしょうか。

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. リン–リン単結合を有する化合物のアルケンに対する1,2-付加反応…
  2. 各ジャーナル誌、続々とリニューアル!
  3. 中学生の研究が米国の一流論文誌に掲載された
  4. 糸状菌から新たなフラボノイド生合成システムを発見
  5. 化学エンターテイメント小説第2弾!『猫色ケミストリー』 
  6. 2017年始めに100年前を振り返ってみた
  7. d8 Cu(III) の謎 –配位子場逆転–
  8. 創発型研究のススメー日本化学会「化学と工業:論説」より

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. JSRとはどんな会社?-1
  2. 非対称化合成戦略:レセルピン合成
  3. GRE Chemistry 受験報告 –試験対策編–
  4. 過ぎ去りし器具への鎮魂歌
  5. 「2010年トップ3を目指す」万有製薬平手社長
  6. 科学警察研究所
  7. 第5回慶應有機化学若手シンポジウム
  8. 第174回―「特殊な性質を持つフルオロカーボンの化学」David Lemal教授
  9. スマホページをリニューアルしました
  10. ペプチドの特定部位を狙って変換する -N-クロロアミドを経由するペプチドの位置選択的C–H塩素化-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP