[スポンサーリンク]

化学者のつぶやき

高収率・高選択性―信頼性の限界はどこにある?

 

“On the Practical Limits of Determining Isolated Product Yields and Ratios of Stereoisomers: Reflections, Analysis, and Redemption”
Wernerova, M.; Hudlicky, T. Synlett 2010, 2701. DOI: 10.1055/s-0030-1259018

今回はちょっとマニアックですが、合成化学の現場向けのおはなしを。

反応開発や化学合成に取り組む場合、化学収率・選択性はどうやって算出していますか?

小スケールの検討段階なら積分値からのNMR/GC内部標準法、ある程度の量が取れる反応なら単離収率(isolated yield)として決めてしまうことが多いと思います。

とはいえいざ論文にそれを載せるとき、また自分が論文上のデータを読み解くとき、果たしてどれほどの実験誤差があると見なすべきなのか?あまりに高い数値の場合、どこまで妥当性のある値なのか?これは化学において意外にも統一見解がなく、きっちり議論されてないことのように思います。人によって認識や感覚が異なるために、いろいろな説が流布している現状ではないでしょうか。

実にこの点を考慮に入れずして正しいデータの提供・解釈など出来ない、というのは正論です。

先日発表されたSynlettのAccountにて、その辺りの論説が公開されました。かいつまんでご紹介してみたいと思います。

「単離収率 >95%」という表記はナンセンス?

そもそも精製で必ずロスがあるので「単離収率>95%」は現実的にありえない、というのが著者らの主張です。

著者らはアセトアニリドの純品を用いて精製操作だけの平均ロスを見積もっています。例えばTable 1はカラムクロマトグラフィにかけた回収結果、Table 2は一般的な分液抽出を経た回収結果です。
limit_yield_2.gif
limit_yield_3.gif正確・妥当な実験手順で何度行ったとしても、精製過程でのロスは避けられないことが分かります。精製操作を一回経るごとに、少なくとも1-2%は必ずロスる、これが現実的認識として適切なようです。蒸留精製や再結晶精製になればもっとブレが大きくなり、実験者のテクニックに依存する側面もかなり大きくなってくるでしょう。

また、小スケールの秤量に基づく収率計算からして信頼性に疑問符がつくとも著者らは主張します。

溶媒が飛びきらないうちに秤量してしまったり、クロマトグラフィに使ったシリカゲルがサンプルに混入することもあるので、収量は得てして高めに出るのは御存知の通り。加えてアカデミック研究の場合、反応スケールも5-20 mgと、ごく小さなことがほとんどです。

著者ら自身もサンプルごとに重さを秤量して、実際値から平均的にどの程度エラーがでるか、ということを見積もっています。
limit_yield_4.gif
limit_yield_5.gifTable3が示すとおり、5mg以下のサンプルでは誤差範囲が10%を超え、単離収率に信頼性が無いことが分かります。使う容器のサイズによっても値はブレる、ということがTable4では示されています。容器が空気中の水を吸うことが一因だそうで、当然ながら、大きな容器を使って少量のサンプルを測るほど、大きな誤差がでる結果になります。

経験の浅い人はつい忘れがちになりますが、保存のために封入する不活性気体・アルゴンも、重さを狂わせる要因の一つです。アルゴンは実にバカにならない重さがあります。「所詮、気体でしょ?」と考える学生の皆さんは、ぜひ一度、自分の目で実際に確かめてみてください。こんなに重さが違うのか!とかなりびっくりすると思いますよ。

こんな現実があるので、数mgしか目的物の取れない全合成にて、overall yieldから効率を比較することなどナンセンスだ、とも述べられています。(代わりにproduct/waste比[1]で効率比較するのが適切、という提案をしています。)

ジアステレオマー比/エナンチオマー比の測定値はどこまで正確なのか?

構造類似なジアステレオマー/エナンチオマーは単離が難しいため、NMR/GC/HPLC/MSなどを活用して混合物のまま存在比を求めてしまうのが定法です。

しかし著者らはちゃんとした校正を経ていないまま測定を行っているがゆえに、ミスリーディングが引き起こされていると主張します。

たとえば下記スキームのようなオギザリルアミドのジアステレオマー混合物を、NMR/HPLC/GCからピーク積分比を求め、実際値と比較した結果がTable5に示されています。
limit_yield_6.gif
limit_yield_7.gif校正は行うほうがベター、これは明らかです。この中では一番精度の悪いイメージたるNMRでも、校正しないGCより精度良く測定できるようです。ただしNMR特有の測定的ばらつきを考慮にいれてないため、やはり信頼性はそこまででも無いようです(1-2%程度は必ずばらつく)。

またどの分析手法を用いても、200/1以上の測定値は事実上アテにならない、ということが見て取れます。サンプル濃度がごく薄い時は非線形吸光応答がみられる(ランベルト・ベールの法則)ため、ピークエリアの積分値は実情を反映しにくいと指摘されています。

またそもそもの話として、化学選択的反応で200/1以上の比を出すには、遷移状態に3kcal/mol以上のエネルギー差が必要であり、人工反応でそれを実現することは事実上不可能、とも述べられています。

その反面、論文によってはNMRだけから1000/1の選択比を算出している例もあるようで・・・さすがにそれはどうなのか?・・・とも思えますが。

さらに彼らは、Mosherエステル法の精度も確かめています。

1-フェニルエタノールを例に、1H/19F NMR、HPLCを用いてエナンチオマー比の測定を行っていますが、ここでもやはり95:5以上の混合比になると確実性がなくなるようです。

そもそもエナンチオ混合物をMosherエステル化する反応は、二つのジアステレオマーを生成させる反応です。エステル化過程でresolutionがかかってしまう可能性も、考慮に入れておかなければなりません。これは意外に忘れがち・見落としがちたるポイントではないでしょうか。

まとめ

結論として、以下のことを徹底すべきだと彼らは主張します。

・「>95%」は正確な測定自体難しく、現実的にはこう書く意味はない
・単離収率は複数回の実験を行い、範囲(range)と転換率(conversion)を表記すべき
・高い測定値データを出したときには、校正の有無を表記すべき
・選択性の表記においては、過剰率(de/ee)よりも比率(dr/er)を使うべき [2] ・数的評価指標に照らさずして、practicalとかefficientという用語を使うべきではない

昔と比べて有機合成の技術が発展したために、収率/選択性のインフレが起こっている現状、100%にかなり近い数値を扱うときには、より一層の慎重さを持つべきだろう・・・という、なかなかに意義ある提案だと思えます。

コンセプトの妥当性を示すために高品質なデータを要求される、ハイペースで論文を出さねばならないプレッシャーがある、反応の価値を判断の容易な「値」だけで決めてしまうレフェリーの存在、アカデミック環境の指導力不足、データ解釈時に入り込む恣意性・・・などなど、数値のインフレが起きる背景には、そんな諸々の要因があると指摘されています。

確かに反応開発研究などはそれが顕著で、反応形式が新しくない限りはよほど良い収率・選択性が出ない限り、一流ジャーナルに通らない現状です。データを見目麗しくすべく上手く行った基質だけを選別し、駄目だった基質はそもそも検討表に載せない・・・などといったことも普通になされています。その良し悪しについて議論することはここではしませんが、競争の激化が生み出す弊害の一つであることは間違いないのでしょう。
捏造とまではいかずとも、良いデータを出したい気持ちがはやるあまり、恣意的なデータ解釈をしがちになるというのは誰にでも起こりえることです。

ラボに入ったばかりで実験経験が浅い学生はもちろん、経験豊富な研究者でも自分を見つめ直す意味で、一読しておくに良い文献では無いでしょうか。

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 細胞の中を旅する小分子|第三回(最終回)
  2. ウーロン茶の中でも医薬品の化学合成が可能に
  3. センチメートルサイズで均一の有機分子薄膜をつくる!”…
  4. 反応の選択性を制御する新手法
  5. L-RAD:未活用の研究アイデアの有効利用に
  6. 若手研究者vsノーベル賞受賞者 【基礎編】
  7. 論文をグレードアップさせるーMayer Scientific E…
  8. 芳香族ボロン酸でCatellani反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アメリカ大学院留学:研究室選びの流れ
  2. リビングラジカル重合による高分子材料合成技術【終了】
  3. 米FDA、塩野義の高脂血症薬で副作用警告
  4. 合成化学の”バイブル”を手に入れよう
  5. フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(リベラリス)
  6. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFinder Future Leaders 2018
  7. 研究助成金を獲得する秘訣
  8. 何を全合成したの?Hexacyclinolの合成
  9. ボールドウィン則 Baldwin’s Rule
  10. 中学入試における化学を調べてみた

関連商品

注目情報

注目情報

最新記事

結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開

ケンブリッジ結晶学データセンターとFIZ Karlsruhe は,無償で利用できる結晶データの登録・…

可視光で芳香環を立体選択的に壊す

キラルルイス酸光触媒を用いた不斉脱芳香族的付加環化反応が開発された。ヘテロ芳香環の芳香族性を壊しなが…

科学とは「世界中で共有できるワクワクの源」! 2018年度ロレアル-ユネスコ女性科学者 日本奨励賞

2018年7月18日、フランス大使公邸にて2018年度ロレアル-ユネスコ女性科学者 日本奨励賞の授賞…

クリストフ・レーダー Christoph Rader

クリストフ・レーダー(Christoph Rader、19xx年x月xx日-)は、米国の生化学者・分…

2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Protecting Group

概要2-(トリメチルシリル)エトキシカルボニル(2-(trimethylsilyl)ethoxy…

即戦力のコンパクトFTIR:IRSpirit

化合物の合成や構造決定に勤しんでいる読者の皆様。最近、島津製作所から新しいFTIR(フーリエ変換赤外…

PAGE TOP