[スポンサーリンク]

化学者のつぶやき

高収率・高選択性―信頼性の限界はどこにある?

 

“On the Practical Limits of Determining Isolated Product Yields and Ratios of Stereoisomers: Reflections, Analysis, and Redemption”
Wernerova, M.; Hudlicky, T. Synlett 2010, 2701. DOI: 10.1055/s-0030-1259018

今回はちょっとマニアックですが、合成化学の現場向けのおはなしを。

反応開発や化学合成に取り組む場合、化学収率・選択性はどうやって算出していますか?

小スケールの検討段階なら積分値からのNMR/GC内部標準法、ある程度の量が取れる反応なら単離収率(isolated yield)として決めてしまうことが多いと思います。

とはいえいざ論文にそれを載せるとき、また自分が論文上のデータを読み解くとき、果たしてどれほどの実験誤差があると見なすべきなのか?あまりに高い数値の場合、どこまで妥当性のある値なのか?これは化学において意外にも統一見解がなく、きっちり議論されてないことのように思います。人によって認識や感覚が異なるために、いろいろな説が流布している現状ではないでしょうか。

実にこの点を考慮に入れずして正しいデータの提供・解釈など出来ない、というのは正論です。

先日発表されたSynlettのAccountにて、その辺りの論説が公開されました。かいつまんでご紹介してみたいと思います。

「単離収率 >95%」という表記はナンセンス?

そもそも精製で必ずロスがあるので「単離収率>95%」は現実的にありえない、というのが著者らの主張です。

著者らはアセトアニリドの純品を用いて精製操作だけの平均ロスを見積もっています。例えばTable 1はカラムクロマトグラフィにかけた回収結果、Table 2は一般的な分液抽出を経た回収結果です。
limit_yield_2.gif
limit_yield_3.gif正確・妥当な実験手順で何度行ったとしても、精製過程でのロスは避けられないことが分かります。精製操作を一回経るごとに、少なくとも1-2%は必ずロスる、これが現実的認識として適切なようです。蒸留精製や再結晶精製になればもっとブレが大きくなり、実験者のテクニックに依存する側面もかなり大きくなってくるでしょう。

また、小スケールの秤量に基づく収率計算からして信頼性に疑問符がつくとも著者らは主張します。

溶媒が飛びきらないうちに秤量してしまったり、クロマトグラフィに使ったシリカゲルがサンプルに混入することもあるので、収量は得てして高めに出るのは御存知の通り。加えてアカデミック研究の場合、反応スケールも5-20 mgと、ごく小さなことがほとんどです。

著者ら自身もサンプルごとに重さを秤量して、実際値から平均的にどの程度エラーがでるか、ということを見積もっています。
limit_yield_4.gif
limit_yield_5.gifTable3が示すとおり、5mg以下のサンプルでは誤差範囲が10%を超え、単離収率に信頼性が無いことが分かります。使う容器のサイズによっても値はブレる、ということがTable4では示されています。容器が空気中の水を吸うことが一因だそうで、当然ながら、大きな容器を使って少量のサンプルを測るほど、大きな誤差がでる結果になります。

経験の浅い人はつい忘れがちになりますが、保存のために封入する不活性気体・アルゴンも、重さを狂わせる要因の一つです。アルゴンは実にバカにならない重さがあります。「所詮、気体でしょ?」と考える学生の皆さんは、ぜひ一度、自分の目で実際に確かめてみてください。こんなに重さが違うのか!とかなりびっくりすると思いますよ。

こんな現実があるので、数mgしか目的物の取れない全合成にて、overall yieldから効率を比較することなどナンセンスだ、とも述べられています。(代わりにproduct/waste比[1]で効率比較するのが適切、という提案をしています。)

ジアステレオマー比/エナンチオマー比の測定値はどこまで正確なのか?

構造類似なジアステレオマー/エナンチオマーは単離が難しいため、NMR/GC/HPLC/MSなどを活用して混合物のまま存在比を求めてしまうのが定法です。

しかし著者らはちゃんとした校正を経ていないまま測定を行っているがゆえに、ミスリーディングが引き起こされていると主張します。

たとえば下記スキームのようなオギザリルアミドのジアステレオマー混合物を、NMR/HPLC/GCからピーク積分比を求め、実際値と比較した結果がTable5に示されています。
limit_yield_6.gif
limit_yield_7.gif校正は行うほうがベター、これは明らかです。この中では一番精度の悪いイメージたるNMRでも、校正しないGCより精度良く測定できるようです。ただしNMR特有の測定的ばらつきを考慮にいれてないため、やはり信頼性はそこまででも無いようです(1-2%程度は必ずばらつく)。

またどの分析手法を用いても、200/1以上の測定値は事実上アテにならない、ということが見て取れます。サンプル濃度がごく薄い時は非線形吸光応答がみられる(ランベルト・ベールの法則)ため、ピークエリアの積分値は実情を反映しにくいと指摘されています。

またそもそもの話として、化学選択的反応で200/1以上の比を出すには、遷移状態に3kcal/mol以上のエネルギー差が必要であり、人工反応でそれを実現することは事実上不可能、とも述べられています。

その反面、論文によってはNMRだけから1000/1の選択比を算出している例もあるようで・・・さすがにそれはどうなのか?・・・とも思えますが。

さらに彼らは、Mosherエステル法の精度も確かめています。

1-フェニルエタノールを例に、1H/19F NMR、HPLCを用いてエナンチオマー比の測定を行っていますが、ここでもやはり95:5以上の混合比になると確実性がなくなるようです。

そもそもエナンチオ混合物をMosherエステル化する反応は、二つのジアステレオマーを生成させる反応です。エステル化過程でresolutionがかかってしまう可能性も、考慮に入れておかなければなりません。これは意外に忘れがち・見落としがちたるポイントではないでしょうか。

まとめ

結論として、以下のことを徹底すべきだと彼らは主張します。

・「>95%」は正確な測定自体難しく、現実的にはこう書く意味はない
・単離収率は複数回の実験を行い、範囲(range)と転換率(conversion)を表記すべき
・高い測定値データを出したときには、校正の有無を表記すべき
・選択性の表記においては、過剰率(de/ee)よりも比率(dr/er)を使うべき [2] ・数的評価指標に照らさずして、practicalとかefficientという用語を使うべきではない

昔と比べて有機合成の技術が発展したために、収率/選択性のインフレが起こっている現状、100%にかなり近い数値を扱うときには、より一層の慎重さを持つべきだろう・・・という、なかなかに意義ある提案だと思えます。

コンセプトの妥当性を示すために高品質なデータを要求される、ハイペースで論文を出さねばならないプレッシャーがある、反応の価値を判断の容易な「値」だけで決めてしまうレフェリーの存在、アカデミック環境の指導力不足、データ解釈時に入り込む恣意性・・・などなど、数値のインフレが起きる背景には、そんな諸々の要因があると指摘されています。

確かに反応開発研究などはそれが顕著で、反応形式が新しくない限りはよほど良い収率・選択性が出ない限り、一流ジャーナルに通らない現状です。データを見目麗しくすべく上手く行った基質だけを選別し、駄目だった基質はそもそも検討表に載せない・・・などといったことも普通になされています。その良し悪しについて議論することはここではしませんが、競争の激化が生み出す弊害の一つであることは間違いないのでしょう。
捏造とまではいかずとも、良いデータを出したい気持ちがはやるあまり、恣意的なデータ解釈をしがちになるというのは誰にでも起こりえることです。

ラボに入ったばかりで実験経験が浅い学生はもちろん、経験豊富な研究者でも自分を見つめ直す意味で、一読しておくに良い文献では無いでしょうか。

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 未解明のテルペン類の生合成経路を理論的に明らかに
  2. メタンハイドレートの化学
  3. リケジョ注目!ロレアル-ユネスコ女性科学者日本奨励賞-2013
  4. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  5. L-RAD:未活用の研究アイデアの有効利用に
  6. 博士号とは何だったのか - 早稲田ディプロマミル事件?
  7. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  8. メーカーで反応性が違う?パラジウムカーボンの反応活性

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ケムステ版・ノーベル化学賞候補者リスト【2016年版】
  2. 第一稀元素化学工業、燃料電池視野に新工場
  3. 第五回 超分子デバイスの開発 – J. Fraser Stoddart教授
  4. ウォルフ転位 Wolff Rearrangement
  5. 京大融合研、産学連携で有機発光トランジスタを開発
  6. 三井化学と日産化学が肥料事業を統合
  7. ノーベル化学賞2011候補者一覧まとめ
  8. 危険ドラッグ:創薬化学の視点から
  9. 基礎から学ぶ機器分析化学
  10. メルマガ有機化学 (by 有機化学美術館) 刊行中!!

関連商品

注目情報

注目情報

最新記事

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

Chem-Station Twitter

PAGE TOP