[スポンサーリンク]

A

交差アルドール反応 Cross Aldol Reaction

[スポンサーリンク]

 

概要

LDAなどの強塩基によってドナー側カルボニル化合物のα位を完全に脱プロトン化させ、金属エノラートを前調製し、自己縮合を抑えて交差アルドール体を得る方法。エノラートの幾何異性に応じて、立体特異的にアルデヒド及びケトンと反応し、syn/anti-アルドール体を与える。

トランスメタル化により、Li、Na、Mg、Zn、B、Al、Tiなど様々な金属種を用いることができるが、中でもシリルエノラートとスズエノラートは単離精製が可能である。特にルイス酸条件下にシリルエノラートをアルドール付加させる反応を向山アルドール反応と呼ぶ。

全合成におけるフラグメントカップリング反応として用いられる例も少なくない。他の例や詳細は文献・Reviewを参照。

基本文献

<review>
・Mukaiyama, T. Org. React. 1982, 28, 203. DOI: 10.1002/0471264180.or028.03
・Heathcock, C. H. Comprehensive Organic Synthesis 19912, 133.
・Kim, B. M. et al. Comprehensive Organic Synthesis 19912, 239.
・Paterson, I. Comprehensive Organic Synthesis 19912, 301.
・Machajewski, T. D.; Wong, C.-H. Angew. Chem. Int. Ed. 200039, 1352. [abstract]
・Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Eur. J. 20028, 36. [abstract]
・Mahrwald, R. ed. Modern Aldol Reactions Wiley-VCH, 2004
・Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65. DOI: 10.1039/b202901d
・Schetter, B.; Mahrwald, R. Angew. Chem. Int. Ed. 200645, 7506. doi:10.1002/anie.200602780

反応機構

Zimmerman-Traxler六員環遷移状態モデル(J. Am. Chem. Soc. 195779, 1920)が立体化学を上手く説明するモデルとして受け入れられている。アルデヒドの置換基はequatorialを向く遷移状態が安定であるとされ、エノラートの幾何異性に依存して生成物の立体化学は決定される。すなわち、Z-エノラートからはsyn体、E-エノラートからはantiのアルドール化合物が得られる。

一般にM-O結合が強い金属(ハードでキレート能のある金属)を用いれば六員環遷移状態がtightになり、立体選択性は向上する傾向にある。
on-ol-001
HMPAのようにリチウムなどの金属と強く配位する配位性溶媒を加えると、金属エノラートの分極が高まり反応性が向上する。一方で六員環遷移状態をとることができなくなる(線形遷移状態を取る)ため、選択性は逆転し、基質に依存するようになる。

 

反応例

置換基を持つケトンのエノラートの生成においては、その位置選択性が通常問題となるが、熱力学的/速度論的支配の条件選択により高度にコントロール可能なことも少なくない。
cross_aldol_3
ホウ素エノラートはB-O結合の短さゆえtightな六員環遷移状態をとり、リチウムエノラートよりも立体選択性が高くなる。
cross_aldol_4
ホウ素エノラートは、使用する試薬を選ぶことでE/Z体の作り分けが可能である。[1] cross_aldol_5
Merrilactone Aの合成[2]:非対称化分子内アルドール反応の応用。
cross_aldol_6.gif
カルボニル化合物の一方がエノラートを生じない場合(たとえばHCHOやArCHO、Ar2COなど)、交差アルドール反応が容易に起こる。(Claisen-Schmidt反応) [3] cross_aldol_7.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

  1.  Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, 111, 3441. DOI: 10.1021/ja00191a058
  2.  (a) Inoue, M.; Sato, T.; Hirama, M. Angew. Chem. Int. Ed. 2006, 45, 4843. doi:10.1002/anie.200601358 (b) Inoue, M.; Lee, N.; Kasuya, S.; Sato, T.; Hirama, M.; Moriyama, M.; Fukuyama, Y. J. Org. Chem. 2007, 72, 3065. DOI: 10.1021/jo0700474
  3.  (a) Schmidt, J. G. Ber. 1880, 13, 2342. (b) Claisen, L. Ber. 1890, 23, 976.

 

関連反応

 

関連書籍

 

関連リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. 秋山・寺田触媒 Akiyama-Terada Catalyst
  2. チャップマン転位 Chapman Rearrangement
  3. Aza-Cope転位 Aza-Cope Rearrangemen…
  4. マーシャル プロパルギル化 Marshall Propargyl…
  5. カチオン重合 Cationic Polymerization
  6. デス・マーチン酸化 Dess-Martin Oxidation
  7. アルキンジッパー反応 Alkyne Zipper Reacito…
  8. カティヴァ 酢酸合成プロセス Cativa Process fo…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ハイフン(-)の使い方
  2. マイクロプラスチックの諸問題
  3. 液体キセノン検出器
  4. 指向性進化法 Directed Evolution
  5. カネボウ化粧品、バラの香りの秘密解明 高級香水が身近に?
  6. 9-フルオレニルメチルオキシカルボニル保護基 Fmoc Protecting Group
  7. パーキンソン病治療の薬によりギャンブル依存に
  8. 2005年5月分の気になる化学関連ニュース投票結果
  9. 有機合成の落とし穴
  10. 磁性液体:常温で液体になる磁性体を初発見 東大大学院

関連商品

注目情報

注目情報

最新記事

ジャーナル編集ポリシーデータベース「Transpose」

およそ3000誌のジャーナル編集ポリシーをまとめたデータベース「Transpose」が、この6月に公…

有機合成化学協会誌2019年9月号:炭素–水素結合ケイ素化・脱フッ素ホウ素化・Chemically engineered extracts・クロロアルケン・ニトレン

有機合成化学協会が発行する有機合成化学協会誌、2019年9月号がオンライン公開されました。ま…

塗る、刷る、printable!進化するナノインクと先端デバイス技術~無機材料と印刷技術で変わる工業プロセス~

お申込み・詳細はこちら開催日時2019年10月18日(金) 10:30~16:50受講料…

5歳児の唾液でイグ・ノーベル化学賞=日本人、13年連続

人を笑わせ、考えさせる独創的な研究を表彰する「イグ・ノーベル賞」の授賞式が米東部マサチューセッツ州の…

アジサイの青色色素錯体をガク片の中に直接検出!

第219回のスポットライトリサーチは、名古屋大学 大学院情報科学研究科(吉田研究室)・伊藤 誉明さん…

高純度フッ化水素酸のあれこれまとめ その2

Tshozoです。前回のつづき。これまではフッ化水素の背景と合成について主に述べましたが、後半は用途…

Chem-Station Twitter

PAGE TOP