[スポンサーリンク]

化学者のつぶやき

緑膿菌の代謝産物をヒトの薬剤に

[スポンサーリンク]

緑膿菌の代謝産物であるPseudomonas quinolone signal(PQS)を有機合成化学によって構造最適化をすることで、Maraxella catarrhalisに強力な活性と種選択性をもつ新規抗生物質が開発された。

緑膿菌とPQS, HHQ

ヒトの病原体である緑膿菌(Pseudomonas aeruginosa)は様々なアルキル鎖や不飽和度をもつ多様な2-アルキル-4-キノロンを代謝産物として生産する。中でも、クオラムセンシングシグナル分子であるPseudomonasキノロンシグナル(PQS)とその生合成前駆体である2-へプチル-4-キノロン(HHQ)は緑膿菌の有毒因子であることがわかっている(図1A)(1)。このクオラムセンシングを通じて、緑膿菌は細菌間での情報授受を行い様々な機能・活性を発現している。その一例として、PQSHHQはグラム陽性菌の一種黄色ブドウ球菌やグラム陰性桿菌の阻害作用をもち、これら外部の菌と緑膿菌は競合することができる。活性ベースタンパク質プロファイリングから、PQS, HHQが緑膿菌中の多くの推定標的タンパク質と相互作用することがわかっているものの、具体的にPQSHHQがどのように機能・活性発現をしているかは未解明である(2,3)。これはすなわち、PQSHHQの構造を基盤として様々な構造類縁体を合成し、これらの機能を解明することで新たな抗生物質の創生につながるチャンスが大きいとも捉えられる。実際に、今回の論文著者であるコンスタンツ大学のBöttcherらは、これまでに2-アルキル-4-キノロンN-オキシドがブドウ球菌に対する抗生剤となることを見いだしている(4)
今回コンスタンツ大学のBöttcherらはPQSのグラム陰性菌に対する抗菌活性を調査した。その結果PQSはグラム陰性病原菌Moraxella catarrhalis選択的に活性を示すことが判明した。著者らはさらなる活性の向上を目指し、PQSのキノロン骨格を改変した誘導体を合成した(図1B)。その結果、キノロン骨格をチオクロメノン骨格(1-S-PQS)とすることで活性が大きく向上した(図1C)。この1-S-PQSの構造活性相関(SAR)研究を行うことで、強力な活性と種選択性をもつ新規抗生剤の開発に成功した。

図1. PQS, HHQとPQS誘導体の活性評価 (一部論文より引用)

 

A thiochromenoneanitibiotic derived from Pseudomonas quinolone signal selectivity targets the Gram-nagative pathogen Maraxella catarrhalis
Szamosvári, D.; Schuhmacher, T.; Hauck, C.; Böttcher, T. Chem.Sci. 2019, Advance article
DOI: 10.1039/c9sc01090d

論文著者の紹介


研究者:Thomas Böttcher
研究者の経歴:
–2006 B.S.,LMU Munish, Germany
2006–2009 Ph.D., LMU Munich (Prof. Stephan A. Sieber)
2010 Postdoctoral research, LMU Munich (Prof. Stephan A. Sieber)
2011 Co-founder of AVIRUGmbH and project leader of the EXIST
2011–2014 Postdoctoral research, Harvard Medical School (Prof. Jon Clardy)
2014– Independent research group, University of Konstanz, Germany
研究内容:細菌代謝産物のケミカルバイオロジー

論文の概要
著者らはPQSのチオクロメノン改変体(1-S-PQS)のSARを通じて、C3位の水酸基が必須であることと、C2に長鎖アルキル基(デシル基)をもつ化合物1M. catarrhalisに対して高い抗菌活性をもつことを明らかにした(図2A)。1M. catarrhalisに対する抗菌作用は全ての臨床分離株(血液培養体や傷口から採取した固体など)において確認された(図2B)。特筆すべき事に、1の抗菌活性は、M. catarrhalisに密接に関連した他の共生種には活性を示さなかった(図2B)。この高い種選択的な抗菌活性はグラム陰性病原体には珍しく、前例はない。一方で、1のヒトの細胞(肺がん細胞および腎臓がん細胞)に対する毒性を評価したところ、その細胞毒性はM. catarrhalisに対する抗菌活性よりはるかに低いものであった。これは、1M. catarrhalisによって引き起こされる感染症の強力な薬剤候補となりうることを示唆する。
次に1M. catarrhalisに対する作用機序を調査した。まず、3H標識されたチミジン、ウラシル、ロイシンの取り込み実験により、1がDNA、RNA、タンパク質の生合成を阻害するか確認した。その結果、1の処理によっていずれの放射線前駆体の取り込み量も減少し、1がDNA、RNA、タンパク質全ての生合成を阻害することが示唆された(図2C)。続いて、1を暴露させた細菌の生存率を調べたところ、2.5 µM以上の濃度において細菌数が著しく減少した。この結果から1は静菌剤ではなく殺菌剤であると考えられる。また、1を高濃度で処理すると、M. catarrhalisは小型のコロニーを形成した。この現象は電子伝達系の異常やATPの枯渇と関連していることが知られている(5)。実際、1を添加して培養したM. catarrhalisのATP濃度は、暴露した1の濃度に依存して減少した(図2D)。このことから著者らは、1がATP産生に関わる因子を阻害することで抗菌活性を示したと結論づけた。
以上、緑膿菌の代謝産物を起点として、強力な活性と顕著な種選択性をもつ抗生物質1が発見された。今後、1が薬剤や微生物研究のための化学的ツールとして利用されることが期待される。

図2. 1-S-PQS誘導体とその活性評価 (一部論文より引用)

以上、緑膿菌の代謝産物を起点として、強力な活性と種選択的性をもつ抗生物質1が発見された。今後、1が薬剤や微生物研究のための化学的ツールとして利用されることが期待される。

参考文献

用語の説明

  • 緑膿菌(Pseudomonas aeruginosa)

生活環境に広く分布している代表的な常在菌の1つである。ヒトに対して病原性をもつものの、健常者に感染しても発症させることはほとんどない。抗菌薬に耐性を示す傾向が強い。

  • クオラムセンシング

細菌が放出する化合物の濃度を感知することで、周囲に存在するその細菌の個体数を認識する機能。名前は定足数(quorum)にちなむ。

  • M. catarrhalis

モラクセラ属の真正細菌の1つで、ヒトの肺炎・気管支炎などの呼吸器感染症の起炎菌として知られる。薬剤耐性を示すことが多い

The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 東北地方太平洋沖地震に募金してみませんか。
  2. 化学でカードバトル!『Elementeo』
  3. 有機ルイス酸触媒で不斉向山–マイケル反応
  4. 前人未踏の超分子構造体を「数学のチカラ」で見つけ出す
  5. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…
  6. 金属を使わない触媒的水素化
  7. 脱芳香化反応を利用したヒンクデンチンAの不斉全合成
  8. 天然イミンにインスパイアされたペプチド大環状化反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. オリーブ油の苦み成分に鎮痛薬に似た薬理作用
  2. FAMSO
  3. カーボンナノベルト合成初成功の舞台裏 (3) 完結編
  4. 分取薄層クロマトグラフィー PTLC (Preparative Thin-Layer Chromatography)
  5. 2001年ノーベル化学賞『キラル触媒を用いる不斉水素化および酸化反応の開発』
  6. イトムカ鉱山
  7. やまと根岸通り
  8. 真空ポンプはなぜ壊れる?
  9. アレン・バード Allen J. Bard
  10. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成

関連商品

注目情報

注目情報

最新記事

リチウム金属電池の寿命を短くしている原因を研究者が突き止める

リチウムリオンバッテリー(リチウムイオン二次電池)はPCやスマートフォンなどの電子機器に利用されてい…

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

Chem-Station Twitter

PAGE TOP