[スポンサーリンク]

一般的な話題

100年前のノーベル化学賞ーフリッツ・ハーバーー

[スポンサーリンク]

さていよいよノーベル化学賞の発表が近づいてまいりました。毎年のことですが、私も電話の前で待機したいと思います。と冗談はさておき、これを機に過去のノーベル化学賞受賞者を振り返り、化学の歴史の重みを感じるのもいいのではないかと思います。今回のポストは100年前のノーベル化学賞、ハーバーについて思いをはせてみましょう。前回の100年前シリーズの記事はこちら

1918年のノーベル化学賞は、「元素からのアンモニア合成法の開発」によりドイツのフリッツ・ハーバー(Fritz Haber)に贈られました。

ハーバーの名は高校の教科書にも出てきます。言わずと知れたハーバー法(ハーバー・ボッシュ法)による、窒素と水素からアンモニアを化学合成するという画期的な手法は、「空気からパンを作る」と表現されるように、肥料としての窒素源の供給に大きな貢献をしました。1905年のハーバーによる著書Thermodynamik technischer Gasreaktionen (The Thermodynamics of Technical Gas Reactions)の中に研究成果の一部が記載されており、鉄触媒の存在下、1気圧、約1000度において窒素と水素から僅かに(0.01%)アンモニアが生成したことを記しています。

Haber(Nobelprize.orgより)

しかし、この研究で先行していたネルンスト(Walther Nernst、あのネルンストの式の方)は50気圧、1000度でわずか0.003%しか生成しないと主張し、測定値がおかしいのではないかと疑われてしまいます。しかしハーバーの元に我が国より留学していた田丸節郎は、アンモニアの生成熱と反応する気体の比熱を精密に測定することで、様々な圧力、温度における平衡定数(すなわちアンモニアの生成量)を導くことに貢献しました。この1907年の成果はネルンストの主張を否定するものであり、アンモニアを工業的に生産できる可能性を示唆するものとなったのです。

実は1901年にはルシャトリエ(Henry Le Chatelier、あのルシャトリエの原理の方)も空気からアンモニアを合成する手法に関して特許を取得しています。しかし、圧力を高めると良くなるということは分かっていたものの、実験装置が爆発して助手達が死亡するという事故に遭い、この研究を断念しています。

他にも高圧放電によって窒素と酸素から酸化窒素を合成し、そこから硝酸を合成する手法や、カルシウムカーバイトからアンモニアを合成する方法などが開発され実用化されたものもありますが、コストが高いという問題がありました。

さて、ネルンストに勝利したハーバーはさらに改良を重ね、約100gのオスミウムを触媒として、1909年175気圧、550度で毎時約80gのアンモニアを合成することに成功しました。この報告を耳にしたBASF社のブルンク社長はボッシュ(Carl Bosch)を伴いハーバーの実験室を見学しました。ブルンク社長は必要な圧力が200気圧にもなると聞いて驚きましたが、ボッシュから可能である旨告げられたことから、アンモニア合成の工業化へ進むことにGoサインを出したのでした。

ハーバー法を工業化する上で、原料となる気体の製造、高圧高温に耐えうる装置の開発とともに、触媒の改良が最も困難と考えられていました。この課題にはミタッシュ(Alwin Mittasch)が取り組み、1909年から1912年の間に6000回を超える実験を繰り返し、四酸化三鉄に、2-6%のアルミナと0.2-0.6%の酸化カリウムを添加する二重促進触媒が最も活性が高いことを見いだしています。その後2万回を超える実験を重ねましたが、この触媒に優るものは見つかりませんでした。その辺りの詳しい経緯はこちらの記事を参照して下さい。

BASF社は1911年、日産100Kgのアンモニア合成を達成し、翌1912年には日産1tにまで増強します。1913年には日産30t、年産にして8700t、1918年には年間18万tを達成しました。こうしてハーバーの貢献により、当時のドイツ帝国における農産物生産への肥料の供給を国内でまかなうことが可能になりました。

ハーバー法の図(こちらの記事より再掲)

さて、この手法は平時には肥料を、戦時には爆薬を作るのに役立つとも言われていました。ハーバー法が開発され、工業化される時期は丁度第一次世界大戦が勃発して拡大する時期と重なっています。この大戦がハーバーの暗部に繋がってしまうのです。

アンモニア合成で知名度を上げたハーバーは1911年に設立されたカイザーヴィルヘルム物理化学・電気化学研究所(現フリッツ・ハーバー研究所)の所長に就任します。1914年に第一次世界大戦が勃発すると、強い愛国心を持つハーバーも軍に志願しますが、却下され、代わりに軍からガソリンの凍結防止剤の開発を命じられました。その後、毒ガスの研究に進むことになるのです。毒ガス兵器はハーグ陸戦条約の第23条「毒、または毒を施した兵器の使用」として禁止されたものであり、当時研究所にいたハーン(Otto Hahn、原子核分裂の発見により1944年ノーベル化学賞受賞)に咎められますが、それに対しハーバーは「毒ガスを最初に使用したのはフランス軍であり、毒ガスを使って戦争を早く終わらせることは、多くの人命を救うことに繋がる」と述べたと伝えられています。日本人ならどこかで聞いたことがあるロジックですね。

確かに1914年8月フランス軍は催涙弾入りグレネード弾を使用したようです。ドイツ帝国側は1915年4月22日にベルギー西部にあるイーペルの地でフランス軍に対して毒ガス兵器を使用しました。この際は塩素ガスだったようです。その年の秋にはフランス軍がホスゲンを使用するなど(この開発にはGrignardが関わっているようです)泥沼状態となりました。ハーバーの妻クララはこの毒ガス兵器の使用に抗議して、ハーバーの銃で自殺したというエピソードがあることも付け加えなければならないでしょう。

ドイツ帝国は劣勢となり1918年11月に戦争は終結しました。毒ガス兵器の製造に携わったハーバーは戦争犯罪人として裁かれることを恐れ一次スイスに逃れますが、その後ドイツに帰国し、ノーベル化学賞受賞の知らせを聞くことになります。あれ?なんか年が合いませんね。ハーバーの受賞は1918年のはずなのに?そうなんです。実は1918年のノーベル化学賞は当初該当者無しとされていました。しかし翌年ハーバーが条件を満たしたとのことで、遡って1918年の受賞者として発表されたのです。ちなみに授賞式は1920年に入ってからでした。

このように、空気からパンを作り人々を飢餓から救う偉業を成し遂げ、その後逆に毒ガス兵器で人々を苦しめるという明暗についてハーバーを語る上で欠かせません。Doctor Deathなどと揶揄されることもありますが、ユダヤ人でありながら強烈な愛国者であったという一面があり、誤った社会構造が彼を誤った方向に導いてしまったのではないかと思うのです。化学者として、この教訓は決して忘れてはならないでしょう。

今年のノーベル化学賞が100年後語られるとき、その研究者が人類の幸せに大きく貢献していることを願ってやみません。

なお本稿ははAngew. Chem. Int. Ed.誌のエッセイを参考にさせていただきました。

Fritz Haber: The Damned Scientist

Dunikowskan M.; Turko, L. Angew. Chem. Int. Ed. 50, 10050 (2011). doi: 10.1002/anie.201105425

 

関連記事および参考サイト

  1. 私が思う化学史上最大の成果-1
  2. 私が思う化学史上最大の成果-2
  3. アンモニアがふたたび世界を変える ~第2次世界大戦中のとある出来事~
  4. 世界最高の活性を示すアンモニア合成触媒の開発
  5. アンモニア合成を通して人類を支えた研究者たち(東京工業大学HP内)

関連書籍

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 虫歯とフッ素のお話① ~どうして歯磨きにフッ素が使われるの??~…
  2. 僕がケムステスタッフになった三つの理由
  3. 第4回ICReDD国際シンポジウム開催のお知らせ
  4. 免疫の生化学 (1) 2018年ノーベル医学賞解説
  5. 人工DNAを複製可能な生物ができた!
  6. 【書籍】パラグラフ・ライティングを基礎から訓練!『論理が伝わる …
  7. ReadCubeを使い倒す(3)~SmartCiteでラクラク引…
  8. 超高速レーザー分光を用いた有機EL発光材料の分子構造変化の実測

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「携帯」の電池で電車走る・福井大などが実験に成功
  2. 地球温暖化-世界の科学者の総意は?
  3. 個性あるTOC その②
  4. 【解ければ化学者】ビタミン C はどれ?
  5. 有機化学クロスワードパズル
  6. NHPI触媒によるC-H酸化 C-H Oxidation with NHPI Catalyst
  7. 住友化学、イスラエルのスタートアップ企業へ出資 ~においセンサーを活用した新規ヘルスケア事業の創出~
  8. ChemDrawの使い方【作図編⑤ : 反応機構 (後編)】
  9. 磯部 寛之 Hiroyuki Isobe
  10. Reaxys PhD Prize再開!& クラブシンポジウム2019参加者募集

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

超塩基配位子が助けてくれる!銅触媒による四級炭素の構築

銅触媒による三級アルキルハライドとアニリン類とのC–Cクロスカップリングが開発された。高い電子供与性…

先端領域に携わりたいという秘めた思い。考えてもいなかったスタートアップに叶う場があった

研究職としてキャリアを重ねている方々の中には、スタートアップは企業規模が小さく不安定だからといった理…

励起パラジウム触媒でケトンを還元!ケチルラジカルの新たな発生法と反応への応用

第 611 回のスポットライトリサーチは、(前) 乙卯研究所 博士研究員、(現) 北海道大学 化学反…

“マブ” “ナブ” “チニブ” とかのはなし

Tshozoです。件のことからお薬について相変わらず色々と調べているのですが、その中で薬の名…

【著者に聞いてみた!】なぜ川中一輝はNH2基を有する超原子価ヨウ素試薬を世界で初めて作れたのか!?

世界初のNH2基含有超原子価ヨウ素試薬開発の裏側を探った原著論文Amino-λ3-iodan…

千葉 俊介 Shunsuke Chiba

千葉俊介 (ちばしゅんすけ、1978年05月19日–)は日本の有機化学者である。シンガポール南洋理⼯…

Ti触媒、結合切って繋げて二刀流!!アルコールの脱ラセミ化反応

LMCTを介したTi触媒によるアルコールの光駆動型脱ラセミ化反応が報告された。単一不斉配位子を用いた…

シモン反応 Simon reaction

シモン反応 (Simon reaction) は、覚醒剤の簡易的検出に用いられる…

Marcusの逆転領域で一石二鳥

3+誘導体はMarcusの逆転領域において励起状態から基底状態へ遷移することが実証された。さらに本錯…

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP