[スポンサーリンク]

化学者のつぶやき

複雑分子を生み出す脱水素型ディールス・アルダー反応

[スポンサーリンク]

 

Molecular Complexity via C-H Activation: A Dehydrogenative Diels-Alder Reaction
Stang, E. M.; White, M. C. J. Am. Chem. Soc. 2011, ASAP. doi:10.1021/ja2059704

 

Diels-Alder反応は化合物の複雑度を迅速に増すことができる、有機合成における最重要反応の一つです。過去に無数の改良が報告されており、複雑化合物でも安心して使えるため、一見して万能そのものです。しかし実は1つだけ、現代まで解決しきれていない問題があります。それはジエンの調製法が限られている点です。ジエン自体が簡単なものであれば良いのですが、複雑なジエンとなるとその合成はとたんに難しくなります。ジエンの安定性そのものに難があるためです。

このような理由があるため、複雑な化合物同士でDiels-Alder反応を行うときは、直前までジエンを露出させない合成ルート設定を余儀なくされてしまいます。反応直前に共役系を伸長させたり、等価体をunmaskするといったアプローチがよく採られますが、先進的なアプローチとは言い難いものです。もともとがアトムエコノミーに優れた反応ですから、保護基などを使わずに、反応の先天的利点を殺さない解決法こそが望まれます。

この観点で大変スマートなアプローチが、イリノイ大学・Whiteらのグループから報告されました。彼女らは独自開発したC-H活性化触媒を用い、選択的脱水素化によってジエンを露出させるという新しい方法論を提示しています。

彼女らが開発したパラジウム触媒はアリル位選択的にC-H活性化を行い、求核剤とカップリングさせることができます。ならば条件を調節することで、β-ヒドリド脱離を経て1,3-ジエンを与えるのでは?という発想が端緒になっています。

white_DA_2.gif

 

最適条件においては求ジエン体を最初から共存させ、活性ジエンを低濃度に保つことが、重合などの副反応を抑えるために重要だったようです。適用の一部を以下に示しますが、条件自体も温和で、官能基選択性は総じて高いです。複雑化合物への適用可能性をきっちり示しているのも彼女らの論文の特徴です。短工程での4環性化合物合成への応用なども示されています。

white_DA_1.gif

 

このようにC-H活性化を適切に使うことで、ありふれた化合物を前駆体として活用することが可能になります。言い換えれば「C-H活性化をよくある局所的修飾法としてではなく、活性種の露出、さらには分子骨格の複雑化に使う」という視点でのコンセプト提示を行っているわけです。斬新な提案の一つといえるでしょう。

ところで論文中では、「末端オレフィンは1600種以上の市販品があるが、1,3-ジエンは120しか市販品が存在しない」という言及がなされています。これも自分の研究が極めて根源的であることを端的に示す、優れたアピール文だと思えます。「シンプルながら入手困難な物質を簡単に作りだす」という到達目標は、合成化学のアイデンティティとも呼ぶべき一つであり、また時代を通じて不変だからです。

「市販品の数」と「合成容易さ・安定性」の間にパラレルな関係がある事自体は、言われて見れば当たり前です。しかし論文で報告される反応の原料というのはたいていが複雑で、市販品でもありません。そもそもこういう類のアピール機会に恵まれないのがほとんどではないでしょうか。

つまりは、このような言及ができるという事実だけでも、コンセプトが極めてベーシックなものであり、かつ高い実用性へ結びつくポテンシャルを秘めている、と言えそうです。反応開発に望む研究者であれば、このような一文がさらりと書けるような研究を目指したいものですね。

 

関連書籍

[amazonjs asin=”3642123554″ locale=”JP” title=”C-H Activation (Topics in Current Chemistry)”][amazonjs asin=”4759813659″ locale=”JP” title=”不活性結合・不活性分子の活性化: 革新的な分子変換反応の開拓 (CSJカレントレビュー)”]

 

関連リンク

White Research Group

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. in-situ放射光X線小角散実験から明らかにする牛乳のナノサイ…
  2. Google日本語入力の専門用語サジェストが凄すぎる件:化学編
  3. 可視光を吸収する配位子を作って、配位先のパラジウムを活性化する
  4. 論文執筆で気をつけたいこと20(1)
  5. 化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~
  6. わずかな末端修飾で粘度が1万倍も変わる高分子
  7. キャリアデザイン研究講演会~化学研究と企業と君との出会いをさがそ…
  8. 芳香族ボロン酸でCatellani反応

注目情報

ピックアップ記事

  1. 試験概要:知的財産管理技能検定
  2. MEDCHEM NEWS 34-3 号「2023年度メドケムシンポ優秀賞」
  3. 高知市で「化学界の権威」を紹介する展示が開催中
  4. 第3のエネルギー伝達手段(MTT)により化学プラントのデザインを革新する
  5. 「研究を諦めたくない」―50代研究者が選んだセカンドステージ
  6. 南ア企業がヘリウム生産に挑む
  7. クロスカップリング反応 cross coupling reaction
  8. Carl Boschの人生 その6
  9. 試験概要:乙種危険物取扱者
  10. 「オプトジェネティクス」はいかにして開発されたか

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP