[スポンサーリンク]

化学者のつぶやき

複雑分子を生み出す脱水素型ディールス・アルダー反応

[スポンサーリンク]

 

Molecular Complexity via C-H Activation: A Dehydrogenative Diels-Alder Reaction
Stang, E. M.; White, M. C. J. Am. Chem. Soc. 2011, ASAP. doi:10.1021/ja2059704

 

Diels-Alder反応は化合物の複雑度を迅速に増すことができる、有機合成における最重要反応の一つです。過去に無数の改良が報告されており、複雑化合物でも安心して使えるため、一見して万能そのものです。しかし実は1つだけ、現代まで解決しきれていない問題があります。それはジエンの調製法が限られている点です。ジエン自体が簡単なものであれば良いのですが、複雑なジエンとなるとその合成はとたんに難しくなります。ジエンの安定性そのものに難があるためです。

このような理由があるため、複雑な化合物同士でDiels-Alder反応を行うときは、直前までジエンを露出させない合成ルート設定を余儀なくされてしまいます。反応直前に共役系を伸長させたり、等価体をunmaskするといったアプローチがよく採られますが、先進的なアプローチとは言い難いものです。もともとがアトムエコノミーに優れた反応ですから、保護基などを使わずに、反応の先天的利点を殺さない解決法こそが望まれます。

この観点で大変スマートなアプローチが、イリノイ大学・Whiteらのグループから報告されました。彼女らは独自開発したC-H活性化触媒を用い、選択的脱水素化によってジエンを露出させるという新しい方法論を提示しています。

彼女らが開発したパラジウム触媒はアリル位選択的にC-H活性化を行い、求核剤とカップリングさせることができます。ならば条件を調節することで、β-ヒドリド脱離を経て1,3-ジエンを与えるのでは?という発想が端緒になっています。

white_DA_2.gif

 

最適条件においては求ジエン体を最初から共存させ、活性ジエンを低濃度に保つことが、重合などの副反応を抑えるために重要だったようです。適用の一部を以下に示しますが、条件自体も温和で、官能基選択性は総じて高いです。複雑化合物への適用可能性をきっちり示しているのも彼女らの論文の特徴です。短工程での4環性化合物合成への応用なども示されています。

white_DA_1.gif

 

このようにC-H活性化を適切に使うことで、ありふれた化合物を前駆体として活用することが可能になります。言い換えれば「C-H活性化をよくある局所的修飾法としてではなく、活性種の露出、さらには分子骨格の複雑化に使う」という視点でのコンセプト提示を行っているわけです。斬新な提案の一つといえるでしょう。

ところで論文中では、「末端オレフィンは1600種以上の市販品があるが、1,3-ジエンは120しか市販品が存在しない」という言及がなされています。これも自分の研究が極めて根源的であることを端的に示す、優れたアピール文だと思えます。「シンプルながら入手困難な物質を簡単に作りだす」という到達目標は、合成化学のアイデンティティとも呼ぶべき一つであり、また時代を通じて不変だからです。

「市販品の数」と「合成容易さ・安定性」の間にパラレルな関係がある事自体は、言われて見れば当たり前です。しかし論文で報告される反応の原料というのはたいていが複雑で、市販品でもありません。そもそもこういう類のアピール機会に恵まれないのがほとんどではないでしょうか。

つまりは、このような言及ができるという事実だけでも、コンセプトが極めてベーシックなものであり、かつ高い実用性へ結びつくポテンシャルを秘めている、と言えそうです。反応開発に望む研究者であれば、このような一文がさらりと書けるような研究を目指したいものですね。

 

関連書籍

[amazonjs asin=”3642123554″ locale=”JP” title=”C-H Activation (Topics in Current Chemistry)”][amazonjs asin=”4759813659″ locale=”JP” title=”不活性結合・不活性分子の活性化: 革新的な分子変換反応の開拓 (CSJカレントレビュー)”]

 

関連リンク

White Research Group

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第42回メディシナルケミストリーシンポジウム
  2. MEXT-JST 元素戦略合同シンポジウム ~元素戦略研究の歩み…
  3. 第25回 名古屋メダルセミナー The 25th Nagoya …
  4. 2つのアシロイン縮合
  5. 今度こそ目指せ!フェロモンでリア充生活
  6. オペレーションはイノベーションの夢を見るか? その3+まとめ
  7. 2017年の注目分子はどれ?
  8. 【6月開催】第九回 マツモトファインケミカル技術セミナー 有機金…

注目情報

ピックアップ記事

  1. 白血病治療新薬の候補物質 京大研究グループと日本新薬が開発
  2. 宇宙に漂うエキゾチックな星間分子
  3. 飯野 裕明 Hiroaki Iino
  4. ブレデレック ピリミジン合成 Bredereck Pyrimidine Synthesis
  5. 辻・トロスト反応 Tsuji-Trost Reaction
  6. プレプリントサーバについて話そう:Emilie Marcusの翻訳
  7. Chemistry on Thanksgiving Day
  8. クリック反応の反応機構が覆される
  9. 大型リチウムイオン電池及び関連商品・構成材料の開発【終了】
  10. 2009年5月人気化学書籍ランキング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP