[スポンサーリンク]

化学者のつぶやき

タウリン捕まえた!カゴの中の鳥にパイ電子雲がタッチ

[スポンサーリンク]

双性イオンを中性の分子で捕えるにはパイが意外と役に立つ

 

よく考えるとベンゼンはなかなか面白い分子であり、それにも関わらずベンゼン環は生物・無生物を問わずいろいろな場面で登場する構造です。ベンゼン環の性質のいくつかは、芳香環の面と垂直に分布し相互に共鳴したパイ電子の影響を、色濃く受けています。

今回は、芳香環のパイ電子雲に注目して設計したカゴの中に、双性イオンをおさめた報告を紹介します[1] 

パイ-カチオン相互作用 と パイ-アニオン相互作用 の 両方を使ってみた

分子に作用しあう力を考えるとき、芳香環のパイ電子雲は、とても興味深い対象です。例えば、核酸塩基はアデニンもグアニンもチミンもシトシンもみなヘテロ芳香環としての性質を持ち、DNAの安定さにはパイ-パイ相互作用が寄与しています。このような作用は、ホスト分子とゲスト分子を引きつけ、超分子として対象となるを取り扱いたいときにも、活用できます。

Π-π_interaction

今回[1]は、双性イオンを、パイ-カチオン相互作用と、パイ-アニオン相互作用の組み合わせを活用してみようと考えました。両方というところに新規性があるとのことです[1]。カゴの中に捕えられる双性イオンは、栄養ドリンクでおなじみタウリンと呼ばれる物質にしました。ヒトの体内でタウリンは、標準アミノ酸のひとつであるシステインから生合成でき、神経細胞では神経調節物質としてやりとりされ、またミトコンドリアではRNAの修飾[2]に使われます。

125px-Taurine.svg

タウリン

カゴの構造をよく見てみると、ベンゼン環の置換基が、エーテル酸素原子であったり、カルボニル炭素原子であったりと、確かにパイ電子雲の濃淡を操作する設計になっています。核磁気共鳴(NMR)を駆使してその構造を調べたところ、期待通りパイ電子が、ホスト分子とゲスト分子が作る複合体の形成に寄与していました。双性イオンを捕まえるために、パイ-カチオン相互作用に加えて、パイ-アニオン相互作用を効かせたところが、今回の研究のポイントです。

2015-09-14_22-26-27

密度汎関数法から導かれる立体構造は論文[1]より転載

タウリンであるとか、この手の双性イオンは水に溶けやすく、そのため正の電荷も負の電荷も帯びていない中性の分子の中に捕えるという試みは、今まで挑戦的な課題だったとのこと[1]。ドラッグデリバリー等の分野で、超分子化学の発展に貢献できるのか、熱烈なパイ電子のタッチに興奮しながら、ふふんと眺めてみます。

 

参考論文

  1. 双性イオンを認識するためにカチオン-パイ相互作用とアニオン-パイ相互作用を組み合わせた ”Combined Cation–pi and Anion–pi Interactions for Zwitterion Recognition” Olivier Perraud et al. Angew. Chem. Int. Ed. 2012 DOI: 10.1002/anie.201106934
  2. タウリンで修飾されるミトコンドリアの運搬RNA ”Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases” Takeo Suzuki et al. Eur. Mol. Biol. Organ. J. 2002 DOI: 10.1093/emboj/cdf656

 

関連書籍

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. Reaxys Prize 2013ファイナリスト45名発表!
  2. アルキンから環状ポリマーをつくる
  3. 最終面接で内定をもらう人の共通点について考えてみた
  4. シクロプロパンの数珠つなぎ
  5. 炭素をBNに置き換えると…
  6. ルィセンコ騒動のはなし(後編)
  7. 渡辺化学工業ってどんな会社?
  8. 稀少な金属種を使わない高効率金属錯体CO2還元光触媒

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Lead Optimization for Medicinal Chemists
  2. 肩こりにはラベンダーを
  3. ノーベル化学賞は化学者の手に
  4. ヘリウム不足いつまで続く?
  5. π⊥ back bonding; 逆供与でπ結合が強くなる?!
  6. マイケル付加 Michael Addition
  7. ネッド・シーマン Nadrian C. Seeman
  8. 光薬理学 Photopharmacology
  9. Angewandte Chemieの新RSSフィード
  10. 2014年化学10大ニュース

関連商品

注目情報

注目情報

最新記事

複雑にインターロックした自己集合体の形成機構の解明

第199回のスポットライトリサーチは、東京大学総合文化研究科(平岡研究室)博士課程・立石友紀さんにお…

小型質量分析装置expression® CMSを試してみた

学生が増えすぎて(うれしい悲鳴ですが)、機器を購入する余裕などこれっぽっちもない代表です。さ…

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

可視光光触媒でツルツルのベンゼン環をアミノ化する

単純なアルキルアミンが利用できる芳香族C–Hアミノ化反応が開発された。基質適用範囲が広く天然物などの…

【21卒】太陽ホールディングスインターンシップ

太陽HDでの研究職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場とし…

Chem-Station Twitter

PAGE TOP