[スポンサーリンク]

化学者のつぶやき

GFPをも取り込む配位高分子

[スポンサーリンク]

配位高分子と呼ばれる材料をご存じでしょうか?
金属イオンと結合する手を持った「配位子」と呼ばれる有機物があります。
結合する手を両側に向けると、金属-配位子-金属-配位子-金属・・・と無限につながった一種の高分子が得られます。
金属の結合方向は有機物と異なっているため、普通のプラスチックとは異なり、面白い配列を構築することができます。
さらに金属イオンに「上下・左右・前後」から配位子を結合させると、下図のようなジャングルジム型の構造体を作ることができます。
これを配位高分子、特にスカスカに孔があいているものを多孔性配位高分子(PCP)と呼びます。

配位子の長さを変えると、孔の大きさも簡単に変えられることから、ある種のガス分子だけを取り出したりするのに便利だと考えられ、最近盛んに研究されています。

配位子とは通常の有機分子、せいぜい1~2 nm 程度の大きさです。
ということはジャングルジムの隙間も1nmか、それより小さい穴になります。
そのため小さい穴を作るのが得意な材料です。

では大きな孔を作ることはできないのでしょうか。

これに答えるべく立ち上がったのが、この世界の第一人者、O. M. YaghiM. O’Keeffeらのグループです。

Large-Pore Apertures in a Series of Metal-Organic Frameworks.
H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi
Science 2012, 336, 1018-1023. DOI:10.1126/science.1220131

 

その手段とは単純明快、細長い配位子をひたすら有機合成したのです。
最大でベンゼン環11個、50Åという長い配位子を合成し、金属イオンと混ぜて配位高分子の合成を行いました。

ligands.png

それにより、6角形の蜂の巣構造の孔、それも80Åもの細孔を有する配位高分子を得ることに成功しました。

余談ですが、配位高分子の合成法は、130℃で一晩煮込むだけ。とっても簡単です。
配位子の合成(有機合成)の方がよっぽど面倒です。
こういう細長い配位子を作るためのファーストチョイスは鈴木-宮浦カップリングで、ここでもそれが用いられています。

largepore.jpg
ナノサイズの細孔を持っている材料として古くから知られているものに、活性炭とゼオライトがあります。
配位高分子とこれら昔からの吸着剤を比較してみると、

  1. 配位高分子の孔を作る壁は分子一枚分と薄く、ゼオライトと比べて少量で、大量のガスを吸着できる。
  2. 活性炭と比べて細孔径が揃っているため、特定のガスだけ吸着させられる。

という特徴があります。

「ふるい」に例えると、
ゼオライト:孔よりも壁の方が多い「ふるい」
活性炭:目の揃っていない「ふるい」
多孔性配位高分子:目の揃ったスカスカの「ふるい」

というところでしょうか。

つまり、今回の成果は
「いろんな目の細かさの、目の揃ったふるい」を作ってやったぜ!
「最小で8Å、最大で80Åの、目の揃ったふるい」を作ってやったぜ!
ということなわけです。

それでは「80オングストロームの目」で、どんなものが分けられるのでしょうか?
Yaghiらは生体分子に目を向けています。
ビタミンB-12(最大径で27Å)、ミオグロビン(最大径44Å)、緑色蛍光タンパク質(GFP、最大径45Å)
といった分子をこれら配位高分子に吸着させると、穴が大きいものにだけ取り込まれることがわかりました。
ただし、細孔の表面が疎水性だと取り込まれないなど、「ふるいの性質」にも依存するようです。

 

とはいえ、うまい孔を作ってやれば、

「特定のタンパクや生体物質だけを取り込むような細孔」

が作れそうだということがわかったわけで、医療検査などへ使えるのではないかと期待してしまいます。

(図はScience論文より引用)

 

関連書籍

[amazonjs asin=”4759813632″ locale=”JP” title=”革新的な多孔質材料―空間をもつ機能性物質の創成 (CSJ Current Review 3)”][amazonjs asin=”4781301355″ locale=”JP” title=”配位空間の化学―最新技術と応用― (CMC books)”]

 

外部リンク

関連記事

  1. コロナワクチン接種の体験談【化学者のつぶやき】
  2. プレプリントサーバについて話そう:Emilie Marcusの翻…
  3. 製品開発職を検討する上でおさえたい3つのポイント
  4. 化学者のためのエレクトロニクス講座~電解で起こる現象編~
  5. 有機合成化学協会誌2019年9月号:炭素–水素結合ケイ素化・脱フ…
  6. 化学者のためのエレクトロニクス講座~フォトレジスト編
  7. “防護服の知恵.com”を運営するアゼアス(株)と記事の利用許諾…
  8. 解毒薬のはなし その2 化学兵器系-2

注目情報

ピックアップ記事

  1. 究極のナノデバイスへ大きな一歩:分子ワイヤ中の高速電子移動
  2. E. J. Corey からの手紙
  3. エマルジョンラジカル重合によるトポロジカル共重合体の実用的合成
  4. プロドラッグって
  5. 二酸化炭素をほとんど排出せず、天然ガスから有用化学品を直接合成
  6. クリスティーナ・ホワイト M. Christina White
  7. 第二回触媒科学国際シンポジウム
  8. 三枝・伊藤 インドール合成 Saegusa-Ito Indole Synthesis
  9. 化学のあるある誤変換
  10. グルタミン酸 / Glutamic Acid

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP