[スポンサーリンク]

化学者のつぶやき

GFPをも取り込む配位高分子

[スポンサーリンク]

配位高分子と呼ばれる材料をご存じでしょうか?
金属イオンと結合する手を持った「配位子」と呼ばれる有機物があります。
結合する手を両側に向けると、金属-配位子-金属-配位子-金属・・・と無限につながった一種の高分子が得られます。
金属の結合方向は有機物と異なっているため、普通のプラスチックとは異なり、面白い配列を構築することができます。
さらに金属イオンに「上下・左右・前後」から配位子を結合させると、下図のようなジャングルジム型の構造体を作ることができます。
これを配位高分子、特にスカスカに孔があいているものを多孔性配位高分子(PCP)と呼びます。

配位子の長さを変えると、孔の大きさも簡単に変えられることから、ある種のガス分子だけを取り出したりするのに便利だと考えられ、最近盛んに研究されています。

配位子とは通常の有機分子、せいぜい1~2 nm 程度の大きさです。
ということはジャングルジムの隙間も1nmか、それより小さい穴になります。
そのため小さい穴を作るのが得意な材料です。

では大きな孔を作ることはできないのでしょうか。

これに答えるべく立ち上がったのが、この世界の第一人者、O. M. YaghiM. O’Keeffeらのグループです。

Large-Pore Apertures in a Series of Metal-Organic Frameworks.
H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi
Science 2012, 336, 1018-1023. DOI:10.1126/science.1220131

 

その手段とは単純明快、細長い配位子をひたすら有機合成したのです。
最大でベンゼン環11個、50Åという長い配位子を合成し、金属イオンと混ぜて配位高分子の合成を行いました。

ligands.png

それにより、6角形の蜂の巣構造の孔、それも80Åもの細孔を有する配位高分子を得ることに成功しました。

余談ですが、配位高分子の合成法は、130℃で一晩煮込むだけ。とっても簡単です。
配位子の合成(有機合成)の方がよっぽど面倒です。
こういう細長い配位子を作るためのファーストチョイスは鈴木-宮浦カップリングで、ここでもそれが用いられています。

largepore.jpg
ナノサイズの細孔を持っている材料として古くから知られているものに、活性炭とゼオライトがあります。
配位高分子とこれら昔からの吸着剤を比較してみると、

  1. 配位高分子の孔を作る壁は分子一枚分と薄く、ゼオライトと比べて少量で、大量のガスを吸着できる。
  2. 活性炭と比べて細孔径が揃っているため、特定のガスだけ吸着させられる。

という特徴があります。

「ふるい」に例えると、
ゼオライト:孔よりも壁の方が多い「ふるい」
活性炭:目の揃っていない「ふるい」
多孔性配位高分子:目の揃ったスカスカの「ふるい」

というところでしょうか。

つまり、今回の成果は
「いろんな目の細かさの、目の揃ったふるい」を作ってやったぜ!
「最小で8Å、最大で80Åの、目の揃ったふるい」を作ってやったぜ!
ということなわけです。

それでは「80オングストロームの目」で、どんなものが分けられるのでしょうか?
Yaghiらは生体分子に目を向けています。
ビタミンB-12(最大径で27Å)、ミオグロビン(最大径44Å)、緑色蛍光タンパク質(GFP、最大径45Å)
といった分子をこれら配位高分子に吸着させると、穴が大きいものにだけ取り込まれることがわかりました。
ただし、細孔の表面が疎水性だと取り込まれないなど、「ふるいの性質」にも依存するようです。

 

とはいえ、うまい孔を作ってやれば、

「特定のタンパクや生体物質だけを取り込むような細孔」

が作れそうだということがわかったわけで、医療検査などへ使えるのではないかと期待してしまいます。

(図はScience論文より引用)

 

関連書籍

 

外部リンク

関連記事

  1. 抗薬物中毒活性を有するイボガイン類の生合成
  2. クロスカップリングの研究年表
  3. 2010年ノーベル化学賞予想ーケムステ版
  4. もし新元素に命名することになったら
  5. フラスコ内でタンパクが連続的に進化する
  6. テストには書けない? カルボキシル化反応の話
  7. 2017年(第33回)日本国際賞受賞者 講演会
  8. アルキン来ぬと目にはさやかに見えねども

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 研究者・技術系ベンチャー向けアクセラレーションプログラム”BRAVE”参加者募集
  2. そこまでやるか?ー不正論文驚愕の手口
  3. イオンのビリヤードで新しい物質を開発する
  4. 炭素文明論「元素の王者」が歴史を動かす
  5. sinceの使い方
  6. ケムステスタッフ Zoom 懇親会を開催しました【前編】
  7. ハリース オゾン分解 Harries Ozonolysis
  8. ペプチド鎖が精密に編み込まれた球殻状ナノカプセル〜24交点の絡まりトポロジーをもつ[6]カテナン分子の合成〜
  9. 香りで女性のイライラ解消 長崎大が発見、製品化も
  10. ジョージ・スミス George P Smith

関連商品

注目情報

注目情報

最新記事

自己修復性高分子研究を異種架橋高分子の革新的接着に展開

第257回のスポットライトリサーチは、東京工業大学 大学院物質理工学院・鶴岡あゆ子さんにお願いしまし…

コロナウイルス関連記事 まとめ

新型コロナウイルスの影響で、キャンパスが閉鎖となる大学も増えてきていますね。私の周りでは、コロナウイ…

機械的力で Cu(I) 錯体の発光強度を制御する

第256回のスポットライトリサーチは、沖縄科学技術大学院大学(OIST)・錯体化学触媒ユニット 狩俣…

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

研究助成金&海外留学補助金募集:公益財団法人アステラス病態代謝研究会

令和2年度はじまりました。とはいってもほとんどの大学講義開始は延期、講義もオンライン化が進み、いつも…

ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基触媒の創製

第255回のスポットライトリサーチは、東北大学大学院理学研究科 化学専攻・石川 奨さんにお願いしまし…

Chem-Station Twitter

PAGE TOP