[スポンサーリンク]

化学者のつぶやき

GFPをも取り込む配位高分子

[スポンサーリンク]

配位高分子と呼ばれる材料をご存じでしょうか?
金属イオンと結合する手を持った「配位子」と呼ばれる有機物があります。
結合する手を両側に向けると、金属-配位子-金属-配位子-金属・・・と無限につながった一種の高分子が得られます。
金属の結合方向は有機物と異なっているため、普通のプラスチックとは異なり、面白い配列を構築することができます。
さらに金属イオンに「上下・左右・前後」から配位子を結合させると、下図のようなジャングルジム型の構造体を作ることができます。
これを配位高分子、特にスカスカに孔があいているものを多孔性配位高分子(PCP)と呼びます。

配位子の長さを変えると、孔の大きさも簡単に変えられることから、ある種のガス分子だけを取り出したりするのに便利だと考えられ、最近盛んに研究されています。

配位子とは通常の有機分子、せいぜい1~2 nm 程度の大きさです。
ということはジャングルジムの隙間も1nmか、それより小さい穴になります。
そのため小さい穴を作るのが得意な材料です。

では大きな孔を作ることはできないのでしょうか。

これに答えるべく立ち上がったのが、この世界の第一人者、O. M. YaghiM. O’Keeffeらのグループです。

Large-Pore Apertures in a Series of Metal-Organic Frameworks.
H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi
Science 2012, 336, 1018-1023. DOI:10.1126/science.1220131

 

その手段とは単純明快、細長い配位子をひたすら有機合成したのです。
最大でベンゼン環11個、50Åという長い配位子を合成し、金属イオンと混ぜて配位高分子の合成を行いました。

ligands.png

それにより、6角形の蜂の巣構造の孔、それも80Åもの細孔を有する配位高分子を得ることに成功しました。

余談ですが、配位高分子の合成法は、130℃で一晩煮込むだけ。とっても簡単です。
配位子の合成(有機合成)の方がよっぽど面倒です。
こういう細長い配位子を作るためのファーストチョイスは鈴木-宮浦カップリングで、ここでもそれが用いられています。

largepore.jpg
ナノサイズの細孔を持っている材料として古くから知られているものに、活性炭とゼオライトがあります。
配位高分子とこれら昔からの吸着剤を比較してみると、

  1. 配位高分子の孔を作る壁は分子一枚分と薄く、ゼオライトと比べて少量で、大量のガスを吸着できる。
  2. 活性炭と比べて細孔径が揃っているため、特定のガスだけ吸着させられる。

という特徴があります。

「ふるい」に例えると、
ゼオライト:孔よりも壁の方が多い「ふるい」
活性炭:目の揃っていない「ふるい」
多孔性配位高分子:目の揃ったスカスカの「ふるい」

というところでしょうか。

つまり、今回の成果は
「いろんな目の細かさの、目の揃ったふるい」を作ってやったぜ!
「最小で8Å、最大で80Åの、目の揃ったふるい」を作ってやったぜ!
ということなわけです。

それでは「80オングストロームの目」で、どんなものが分けられるのでしょうか?
Yaghiらは生体分子に目を向けています。
ビタミンB-12(最大径で27Å)、ミオグロビン(最大径44Å)、緑色蛍光タンパク質(GFP、最大径45Å)
といった分子をこれら配位高分子に吸着させると、穴が大きいものにだけ取り込まれることがわかりました。
ただし、細孔の表面が疎水性だと取り込まれないなど、「ふるいの性質」にも依存するようです。

 

とはいえ、うまい孔を作ってやれば、

「特定のタンパクや生体物質だけを取り込むような細孔」

が作れそうだということがわかったわけで、医療検査などへ使えるのではないかと期待してしまいます。

(図はScience論文より引用)

 

関連書籍

 

外部リンク

関連記事

  1. 若手研究者vsノーベル賞受賞者 【化学者とは?!編】
  2. 高機能・高性能シリコーン材料創製の鍵となるシロキサン結合のワンポ…
  3. メチレン炭素での触媒的不斉C(sp3)-H活性化反応
  4. J-STAGE新デザイン評価版公開 ― フィードバックを送ろう
  5. 【医薬分野のみなさま向けウェブセミナー】マイクロ波を用いた革新的…
  6. “follow”は便利!
  7. アゾベンゼンは光る!~新たな発光材料として期待~
  8. 薬学会年会も付設展示会キャンペーンやっちゃいます

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ヘル・フォルハルト・ゼリンスキー反応 Hell-Volhard-Zelinsky Reaction
  2. 高井・内本オレフィン合成 Takai-Utimoto Olefination
  3. アスピリンから生まれた循環型ビニルポリマー
  4. 金属容器いろいろ
  5. 非選択性茎葉処理除草剤の『ザクサ液剤』を登録申請
  6. カーボンナノリング合成に成功!
  7. カルボニル化を伴うクロスカップリング Carbonylative Cross Coupling
  8. 米国版・歯痛の応急薬
  9. NMRの化学シフト値予測の実力はいかに
  10. 114番元素生成の追試に成功

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP