[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」④(解答編)

[スポンサーリンク]

 

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第4回は宮下・谷野らによるNorzoanthamineの全合成を取り上げました(問題はこちら)。今回はその解答編になります。

Total Synthesis of Norzanthamine
Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K. Science 2004, 305, 495. DOI:10.1126/science.1098851

 

解答例

何はともあれ、望む反応および副反応のメカニズムを理解せずには手がつきません。

ここで進行させたい反応は、見ての通りケトンをアルキンに変換する反応です。無水トリフルオロスルホン酸(Tf2O)でケトンを処理してエノールトリフラートに変換した後、塩基(DBU)によるβ脱離を行うことで、望みの化合物が得られるという寸法です。

next_move_4a_1

しかし実際には望むアルキンBに加え、副反応由来のCが生じてきます。よくよくCを眺めると反応点の炭素原子の酸化度が変わっていることが分かります。実はこの副反応、分子内近傍に水素原子、またそれがエーテルのα位に位置しているために起こる、求電子性カルボニル基へのヒドリド転位が起点となっています。Tf2Oと反応するところまではABと同じ経路を共有しているのですが、その後が違っています。つまり、ヒドリド転位によってカルボニル基が還元されたあと、続く塩基処理によって分子内環化が起こることで、副生成物Cが生じているのです。

next_move_4a_2

さて以上の理解をもとに、どうやればCの生成を抑えられるか?と考えてみると、「分岐起点となるヒドリド転位を起きづらくしてやればいいのでは?」という発想に至ることができます。ABの経路には、ヒドリド転位の過程が存在しないためです。

問題文では「基質の重水素化によって解決した」とあることから、速度論的同位体効果(Kinetic Isotope Effect, KIE)を活用していると推測できます。KIEとはおおまかには「反応に関わる原子をより質量数の大きな同位体へと置換してやれば、反応速度が低下する」という現象です。これを念頭におくことで、転位してほしくない水素原子を重水素原子で置き換えれば、ヒドリド転位が抑制されるだろう、という発想が出てきます。

以上の考察から、下のようなA-d2こそが望む重水素化体であると考えることができます。

next_move_4a_3

予想外のトラブルへの対処から場当たり的に考えだされたはずのA-d2ですが、見かけ上はそれをかけらも感じさせない巧妙な経路で作られており、驚く他ありません。

まず、基本的な合成経路を全く変更することなく、重水素源として入手可能な試薬(Ph3PCD3Br)を使って作られています。これにより価格を抑えられることはもちろん、大きなルート変更を回避することで長年の蓄積がある知見をそのまま用いることができ、基礎研究に費やした時間を無駄にすることがなくなります。

また、最終的に重水素が全てが除去されて、標的に重水素を残さない経路設計になっている点も着目すべきでしょう。これは重水素化標的となっている炭素が、最終的にカルボン酸まで酸化される宿命にあるという本質に着目した一手となっています。

next_move_4a_4

合成経路を大局的に俯瞰できる眼があってこそ、今回のような「極限からの一手」の選択が可能となるのです。匠の発想がキラリと光る、優れた解決法だと思います。

本合成は過去にケムステでも詳細を解説しておりますので、そちらも併せてご覧頂ければと思います。

 

関連書籍

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 多才な補酵素:PLP
  2. 複雑な生化学反応の条件検討に最適! マイクロ流体技術を使った新手…
  3. アメリカで Ph.D. を取る -Visiting Weeken…
  4. レビュー多すぎじゃね??
  5. 香料:香りの化学3
  6. tRNAの新たな役割:大豆と微生物のコミュニケーション
  7. アルカリ土類金属触媒の最前線
  8. 酵素触媒によるアルケンのアンチマルコフニコフ酸化

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第10回日本化学連合シンポジウム 化学コミュニケーション賞2016 表彰式
  2. 高分子と高分子の反応も冷やして加速する
  3. 2007年度ノーベル化学賞を予想!(2)
  4. 不斉触媒研究論文引用回数、東大柴崎教授が世界1位
  5. 論説フォーラム「研究の潮目が変わったSDGsは化学が主役にーさあ、始めよう!」
  6. 有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング
  7. 化学のブレークスルー【有機化学編】
  8. 宮坂 力 Tsutomu Miyasaka
  9. 年収で内定受諾を決定する際のポイントとは
  10. 英グラクソスミスクライン、抗ウイルス薬を大幅値引きへ

関連商品

注目情報

注目情報

最新記事

お前はもう死んでいる:不安定な試薬たち|第4回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

第60回―「エネルギー・環境化学に貢献する金属-有機構造体」Martin Schröder教授

第60回の海外化学者インタビューは、マーティン・シュレーダー教授です。ノッティンガム大学化学科(訳注…

炭素置換Alアニオンの合成と性質の解明

第249回のスポットライトリサーチは、名古屋大学大学院工学研究科(山下研究室)・車田 怜史 さんにお…

第59回―「機能性有機ナノチューブの製造」清水敏美 教授

第59回の海外化学者インタビューは日本から、清水敏美 教授です。独立行政法人産業技術総合研究所(AI…

高分子鎖デザインがもたらすポリマーサイエンスの再創造 進化する高分子材料 表面・界面制御アドバンスト コース

詳細・お申込みはこちら日時2020年 4月16日(木)、17日(金)全日程2日間  …

光で水素を放出する、軽量な水素キャリア材料の開発

第248回のスポットライトリサーチは、東京工業大学物質理工学院(宮内研究室)・河村 玲哉さんにお願い…

Chem-Station Twitter

PAGE TOP